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ABSTRACT 

A general class  of differential games, where the N players 

t r y  to minimiae different cost c r i t e r i a  by controlling inputs to a 

single dynamic system, i s  investigated a s  an extension of optimal 

control theory. Dropping the usual zero-sum assumption makes 

i t  possible to model a more  realistic c lass  of competitive situations 

where mutual interest i s  important. 

The nonzero-sum formulation has several  interesting analytic 

and conceptual features not found in zero-sum differential games. 

It i s  no longer obvious what should be demanded of a "solution, Ii 

and three types of solution concepts a r e  discussed: Nash equi l ibxim,  

minimax, and noninferior (or  Pare to  optimal) strategies.  For  one 

special case, the "linear-quadratic 'I differential game, a l l  of these 

solutions can be computed exactly by solving sets  of coupled ordinary 

matr ix  differential equations. 

Another feature not found i n  optimal control problems o r  in  

two-person, zero-sum differential games i s  the difference between 

"open loop I' and "closed loop It equilibria. The "principle of optimality 'I 

of optimal control theory does not generalize in  a n  obvious way to the 

nonzero-sum differential game. Some simple examples a r e  given to 

il lustrate this.  It i s  shown that the various efficient algorithms of 

optimal control theory (such a s  "differential dynamic programmingu) 

do not readily extend to the computation of Nash equilibrium controls, 

However, approximate Nash solutions can be obtained in  certain special 

cases .  

Some simple examples a r e  solved, and se r i es  of more  difficult 

but =ore realistic nonzero-sulm differential game situations are p re -  

sented (but not solved) for models of economic oligopoly, advertising 

policy, labor -management negotiations, and international t rade,  
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CHAPTER I 

INTRODUCTION 

A differential game i s  a mathematical model of a competitive 

situation which evolves over time. The structure of a general differen- 

t ial  game i s  illustrated in Fig. 1. 1. There a r e  N "players," each 

continuously controlling a different set of inputs to a single dynamic 

system and each trying to minimize his own particular cost criterion. 

Associated with the dynamic system i s  an  n-dimensional "state vector" 

which, at  any time, contains a l l  the information needed to predict the 

future behavior of the system if the future inputs a r e  known. The state 

vector i s  governed by an nth order differential equation in which the 

various inputs appear a s  driving terms.  

DYNAMIC SYSTEM 

Fig. 1.1. Structure of a general differential game 



A peculiar feature of this problem i s  that it  i s  not generally 

clear  what i s  meant by a usolution. If In fact, there i s  a variety of 

interesting "solution" concepts, depending on the information available 

to the players during the course of the game and on the '%rationalesw 

used by the players. The remaining chapters will be concerned with 

defining, characterizing and computing several of the most interesting 

types of solutions. 

Since the study of differential games was initiated by Isaacs ( 1 )  

in  1954, many papers on the subject have appeared, mostly dealing 

with problems of the pursuit-evasion type. These papers have con- 

sidered only two-player differential games with the "zero-sum1' property, 

i. e.  , there i s  a single performance index which one player t r ies  to 

minimize while the other player t r i es  to maximize. A zero-sum game 

i s  a model of "total conflict" which excludes the possibility of mutual 

interest  between the players. Since mutual interest plays an  important 

role in  realistic competitive situations (especially in those arising in 

economic contexts, but even in  some military applications), a theory 

built on the zero-sum hypothesis i s  severely limited in i t s  range of 

possible applications. On the other hand, zero-sum games a r e  much 

simpler,  both conceptually and analytically, than nonzero- sum games. 

Apparently no journal art icles have yet appeared on nonzero-surn 

differential games, except for two based on the present work. K3)  sow- 

ever, in a technical report, case") extended some of Isaacs results 

to the N-pJ.ayer, nonzero- sum differential game. Case did not explore 



the implications of dropping the zero-sum hypothesis. Although 

several  examples of the pursuit-evasion type were presented in that 

report, no examples of the application of the model to realistic corn- 

petitive si~uations were discussed. Further work on the subject by 

Case and others should appear in the literature in  the near future. 

The theory of nonzero-sum differential games in effect merges 

general game theory with optimal control theory, and the l i terature 

of these two subjects i s  much more useful than the zero-sum differential 

game literature a s  a source of ideas in  studying nonzero-sum differential 

games . 

This work has been motivated by a desire to understand the 

role of competition in economic processes which have a dynamic 

structure. If the dynamic behavior of such a structure can be ade- 

quately approximated by a continuous, finite-dimensional dynamic 

system (described by linear o r  nonlinear differential equations) then 

i t  i s  appropriate to model the process by a differential game. 

It i s  by no means a trivial matter  to formulate a meaningful. 

differential game model for a realistic competitive situation, especially 

one with a "nonphysical" (e. g. , economic) context. Even when the 

model has been formulated, it  i s  not always clear  what questions to 

ask. It i s  therefore important to consider the broad, general features 

of differential games before becoming immersed in  ithe details of cornm 

puting a particular type of solution to some specific model. Thus we 

shall take just the opposite approach to that taken by Isaacs in his book ( 1 )  



on zero-sum differential games. The few specific examples which 

we shall consider will be intended only a s  illustrations. We shall not 

rely (as  Isaacs does) on specific examples a s  a means for discovering 

general principles. 

Although we shall discuss differential games i n  rather general 

terms,  we shall occasionally make restrictive assumptions. For  

example, we shall consider only models with fixed terminal  time. 

This eliminates some pursuit-evasion models (such a s  several  of the 

examples considered by but does not appear to eliminate any 

interesting economic models. With fixed terminal time, one i s  always 

certain that the game will terminate, regardless of how the players 

behave. 

Our approach to differential games will always be from the 

viewpoint of optimal control theory. (5) We shall consider only problems 

where, if al l  but one controller were eliminated, the remaining opti- 

mization problem would be most appropriately solved by the methods 

of optimal control theory, rather than by some type of nonlinear pro- 

gramming. It will be assumed that the reader i s  familiar with the 

better-known results of optimal control theory, and some of these r e -  

sults will be used without proof (and sometimes without a detailed 

statement of the conditions under which they hold) in analy sing nonzero- 

sum. differential games. 

The spirit  of this work i s  thus to attempt to generalize optimal 

control theory to allow for several controllers with different objectives. 

Such an extension of an optimal control problem results in a game 



situation, and many of the ideas of general game theory become rele-  

vant. However, i t  i s  important to remember that our starting point 

i s  optimal control theory, not game theory. We do _not approach our 

study of differential games a s  a limiting case of a succession of 

"static games. 

Since this work i s  viewed as an extension of optimal control 

theory, i t  i s  not assumed that the reader i s  familiar with game theory. 

All the game-theoretic concepts which will be used in the later  chapters 

a r e  presented in  Chapter 11. Many of the important ideas of general 

game theory a r e  & discussed in this work. For  example, mixed 

a r e  not considered because they do not seem relevant to 

the applications envisioned here (see Chapter 8).  Very little i s  said 

about coalitions, not because they a r e  unimportant, but because there 

a r e  simpler unresolved difficulties in analysing differential games 

which should be settled before such complications a r e  introduced. In 

general, we shall rely on game theory for solution concepts but not for 

analytic methods. 

Depending on the background and interest of the reader, there 

a r e  various ways to approach this work. The reader who i s  only 

casually interested and who wonders if there really could be any use 

for nonzero-sum differential games could s tar t  by reading the f irst  two 

pages of Section 3.1. He should then look a t  some of the examples of 

differential game models in Chapter VIII. If his interest i s  aroused, 

he may then return to Chapter 11 and proceed from there, skipping some 

of the more  detailed sections. 



1-6 

The reader with a background in optimal control theory and 

a general interest in differential games may read the chapters in 

order, perhaps skipping over the less  interesting sections. It i s  

essential, however, that the reader thoroughly under stands every - 
thing in Chapter I1 (except the last  two pages in  Section 2. 5, 

concerning directional convexity) before reading Chapters 111 through 

VII. Chapter 111 i s  also essential to the remaining chapters.  

The reader may also prefer  to read the summary and con- 

clusions in Chapter IX before proceeding with Chapter 11. 
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NONZERO-SUM GAMES 

2.  1 Introduction 

The primary concern of this report i s  differential games, where 

the decision variables a r e  functions of time and possibly of other 

independent variables a s  well. The situations a t  different times in 

such a game a r e  related through a dynamic system described by a 

set of ordinary differential equations. 

However, many of the concepts in differential games a r e  also 

important in the much better known theory of lfstaticlr games, where 

no dynamics a r e  involved. In a static game, each player chooses his 

strategy from a given set  of allowable strategies. The cost for each 

player i s  known (in advance) a s  a function of the strategies selected 

by a l l  players. One usually adopts the view that a l l  players select 

their strategies simultaneously without knowledge of what strategies 

the rivals will choose. Even differential games can conceptually be 

viewed as static games where the set  of admissible strategies is some 

region in a function space. 

The purpose of this chapter i s  to present some concepts from 

the general theory of games which will be useful in understanding 

differential games. There a r e  no new results in this chapter, but 

the ideas and language established here  form the basis  for the discussion 

in  all the remaining chapters. 



The most general game which we shall consider i s  defined as  

follows : 

: A G contains the following objects : I 

th 
1)  A set  of N 'gplayers," where the i player (i = 1 , .  . . , N) 

selects a si from a given set Ui of admissible 

strategies. 

2 )  A set of J = [ J ~ J ~ .  . . JN] 

3) A set  of N orderings 5, i = 1 . . , N of set  of a l l  admissible 

strategy N-tuples s E U l x  . . X U  such that (letting U = U 1 x 0 . x U p  N 

for any u, v c U, 

u d. v iff Ji(u) < Ji(v) 
1 

The symbol A. may be read I f . .  . i s  preferred by the i t h 
L 

player to. . . I f  

Note that the orderings arnong the various strategy N-tuples would 

not be affected i f ,  for i = 1 , .  . . , N, the function J . ( s )  were replaced 
1 

where f. i s  any 
1 

function. In many (but not all$<) 

applications, these orderings a r e  a l l  that i s  needed to determine the 

outcome of the garne, so  that one i s  free to make transformations of 

the form (2. 1). 

* One exception would be a stochastic game where players t ry  to 
minimize the expected values of their cost functions. 



Two special cases of the games defined above a r e  especially 

we 11 known: 

1) If N = 1, then G is called a 

an 

2) If N = 2 and Jl  + J2 = 0, then G is called a 

Zero-sum games with more  than two players may also be defined, 

but they a r e  of little special interest.  

In applications where only the orderings among the strategy 

N-tuples i s  important, any two-person game with the property that, 

for a l l  u, v cz U 

u - j v  iff v $ u  (2.2) 

can be converted via (2.1) to a zero-sum game. Whenever a game 

has property (2.2) and can be transformed to a zero-sum game, this 

should be done, since these games of perfect competition a r e  eas ier  

to analyze than nonzero-sum games. 

A third special case of some interest is :  

3) If J1 = J 2  = . . . = JN, then G i s  an  

If only the orderings are needed to tlsolven the game, then 

any game in which, for al l  u, v e U 

u .< v f o r  some i 3 u - 5  v f o r  all i, i = 1, ..., N 
1 

( 2 . 3 )  

can be converted via (2.1) to an  identical-goal game. These "perfectly 

cooperative gamesn may be treated a s  minimization problems, assuming 

that the same information i s  available to a l l  the players. 



However, the nonzero-surn games which a r e  of prime interest  

to us generally do not have any of the above special properties.  Both 

mutual interest  and conflict of interest a r e  present  in  a general game. 

Some of the important features of nonzero-sum games can be 

il lustrated by simple bimatrix games of the type presented i n  Luce 

and ~ a i f f a ( ~ )  and in  most  other texts on game theory. Several such 

games will be presented in  this section. They will be discussed further 

i n  the following two sections. 

Came 1. Zero-sum Game 2. Zero-sum 

Player 2 Player  2 

Player  1 Player  I 

In Game 1, Player  % chooses between strategies a and b, while 

Player  2 simultaneously must choose x o r  y. The corresponding 

entries give the costs  J l ,  J2 for the two players .  For  each strategy 

pair,  J1 C JZ = 0, so  the game i s  zero-sum. (In a l l  games, each 

player wishes to minimize his own cost and i s  indifferent to the cost  

paid by the other player.  ) Player 2, if he i s  rational, will always 

play x, and Player  1, realizing this, will play a. This "saddle-point I' 

solution i s  apparently the only reasonable one. 

In Game 2, also zero-sum, no saddle-point solution exists.  

But Player  1 can minimize his maximum possible loss by choosing a ,  

'%The mater ia l  in Sections 2.2, 2. 3, and 2 .4  was presented in  [ Z ]  but i s  
repeated here  for convenience. The reader may skip to Section 2.8, 
where these solution concepts a r e  il lustrated by a "continuous I' static 
game. 



on the assumption that Player 2 will ignore his own cost criterion 

and attempt to do maximum damage to Player 1 's  criterion. By 

the same reasoning, Player 2 would choose x. Thus (a, x) i s  a 

%ninirnaxl~ solution, but i t  i s  not a saddle-point solution, i. e. , i t  

i s  not optimal for Player 2 against Player 1 Is strategy. 

Game 3. "Dating game '1 Game 4. IrPrisoners dilemma 
I 

Player 2 Player 2 

Player 1 Player 1 

Game 3 i s  called the "dating game. " Players  1 and 2 are  "heg' 

and "she respectively, and decisions a and x represent Ifgo to football 

gameg1 while b and y represent "go to fashion show." The entries in 

the cost matrix indicate that, while nhe If and "she " have different 

ideas a s  to which alternative i s  preferable, both prefer  the other Is  

company to going to either event alone. It is easily verified that neither 

(2 .2)  nor ( 2 . 3 )  hold, so Game 3 must be analysed as a nonzero-sum 

game. 

Game 4, also nonzero-sum, i s  the celebrated "prisoners dilemma. s f  

Two prisoners, held in separate cells, a r e  charged with similar crimes, 

Each possesses information about the other 's c r ime  which, if divulged, 

would enable the state to obtain a conviction on a serious charge with a 

10-year sentence. Without this information only a lesser conviction 

with a 2-year sentence could be obtained. The district attorney offers 

to halve the sentence of either or  both prisoners i f  they divulge this 



information. Strategies a and x represent  '"0 not talk," while b and 

y represent  fltalk. '"0 communication i s  possible between the 

prisoners .  

It should already be apparent from Games 3 and 4 that i t  i s  not 

obvious what i s  meant by a "solutionff of a nonzero-sum game. In 

this section we define one type of solution which will be of cent ra l  

in teres t  in  differential games : 

Definition: Ii J1 (S  . . . , sN), . . . , JN(sl ,  . . . , s ) a r e  cost  functions N 

for  players 1 . . . , N, then the strategy se t  {sf ,  . . . , s&} i s  a 

strategy s e t  i f ,  for i 1 , .  . . , N, 

J i (s f ,  . . . s Xc i-. 1 9  S i p  s >8 i+lY ' . . , s* ) 2- Ji(5T, . . ., 8%) 
N (2.4) 

where s .  i s  any admissible strategy for Player  i. 
1 

In other words, the Nash equilibrium strategy i s  the optimal s trategy 

for  each of the players on the assamption that a l l  of the other players 

a r e  holding fast to their Nash strategies.  In the two player, zero-sum 

case,  the Nash solution i s  the familiar saddle-point solution. 

The Nash solution i s  "'secure '' against unilateral attempts by 

any player to optimize. One must avoid the mistake of calling a Nash 

solution "optimal.1f En fact it i s  almost always possible for a l l  players 

to achieve simultaneously lower costs than the Nash costs.  

Note also that, for N > 2, the Nash solution i s  not secure  against 

coalitions among a subset of the players.  



The Nash solution for a continuous static game (not a bi-matrix 

game) will be illustrated in Section 8 below. 

It can be seen by inspection that Games 1, 3 and 4 above have 

Nash equilibria, while Came 2 does not. 

This section considers some of the differences between nonzero- 

sum and zero- sum games. 

It can easily be shown that in a zero-sum game 

(i) All Nash equilibria a r e  , i. e . ,  have the same 

costs, and 

(ii) If (sl,  s2)  and (sf ,s2)  a r e  equilibrium pairs ,  then so a r e  
. . 

It i s  also clear  that there can be no mutual interest in a zero-sum game; 

what i s  good for one player i s  harmful to the other. Nor can one player 

ever gain by disclosing his strategy in  advance to his opponent. 

Game 3, the "dating game, is nonzero-sum, It has - two Nasb 

equilibria, (a, x) and (b, y), with different costs. They a r e  not inter - 
changeable, since (a, y) and (b, x) a r e  not equilibria. Notice what 

happens when both players seek to achieve their lowest possible costs.  

But if Player 1 announces in advance that he i s  committed to strategy a ,  

then Player 2 has no choice but to play x! Thus it  i s  advantageous in 

some (but not all) nonzero-sum games to disclose one's strategy in ad- 

vance, i. e. , to make the f irst  



Came 4 i s  the classical  'lprisoners dilemma. The only 

equilibrium solution i s  (b, y), yet fa, x) gives a better resul t  for both 

players. The solution (a, x) i s  vulnerable to flcheating" by one player, 

while (b, y) i s  not. This i l lustrates the of the Nash 

equilibrium solution in the nonzero-sum game. There i s  mutual in- 

te res t ,  since both players could gain i f  cooperation were possible. 

These simple examples should convince the reader  that there 

a r e  important phenomena which can a r i s e  in nonzero-sum, but not 

in zero-sum, games, and that the Nash equilibrium i s  not the 

interesting solution. The next three sections describe other types 

of solutions which may also be of interest.  

2. 5 Noninferior solutions 

One may wish to know what could be gained by a l l  players i f  a 

"negotiated" solution could be reached and enforced. Clearly such 

a solution should be selected from the following se t  of strategy N-tuples : 

Definition: The strategy N-tuple 6 = {el ,  . . . , @,) belongs to the E- 

inferior set  i f ,  for any other strategy N-tuple 6, 

{ ~ ~ ( 6 )  -S Ji(@), i=1, . . . , N) only i f  {Ji(6) = Ji(6), i=l,  . . . 9 N) ( 2 .  5 

Solution i s  said to dominate solution 8 i f  

J,(B) -' Ji(@) , i = 1, . . . , N  

with the inequality s t r ic t  for a t  least  one i. If the inequalities a r e  

s t r ic t  for a11 i, we say that 6 8 .  The noninferior 

solutions a r e  thus the only undominated solutions. They a r e  sometimes 



called "efficient or "Pareto-optimal" solutions. A solution i s  non- 

inferior i f  any other solution which gives a better result for at  least 

one player also gives a worse result for at  least one player. 

Solving for the set  of noninferior controls i s  equivalent to solving 

a minimization problem with a vector cost criterion. There a r e  

several  useful and well-known results for this class of problems ( 7 )  o 

They revolve around the question of whether o r  not the minimization 

problem with a vector cost criterion can be reduced to a family of 

minimization problems with scalar  cost cri teria.  Such a process i s  

called "scalarization," and i s  the subject of the remainder of this section. 

Let M be the set  of a l l  N-vectors with strictly positive components, 

whose components add to unity: 

M = {p Ip .  > 0 for a l l  j and 
J 

Let be the closure of M (obtained by replacing > by 3 ). 

Letting a strategy N-tuple [ul,  . . . , u ] be denoted by u, we define N 

the 

minimize J(p, u) = piJi(u) where p E M. (2.8) 
U i= 1 

Let  the set  of noriinferior costs be denoted by A.. Let 52 be defined as 

the set  of cost vectors obtained by solving a l l  problems of the form 

( 2 . 8 ) :  

52= {~(u) 1; solves P(p)  for some p E M) 

and let be the closure of 52. 



We can now state some of the relations between the noninferisr 

set and the set of solutions to all  scalar  minimum problems of the type 

(2 .8 ) .  

Theorem: a C A . 

Proof: Suppose';; E a b u t u i s  not noninferior. Then there i s  a 

solution v c U such that Ji(v) 4 Ji(;) for a l l  i, with at  

least one inequality str ict .  But since a l l  pi a r e  positive, 

this means 5 does not minimize J(p,u) and hence J(;) k a, 
a contradiction. 

Thus we can always obtain a t  least some of the noninferior solutions by 

solving P(p)  for al l  p e M. 

Theorem: If for each p J. % either P(p) has a unique solution o r  no 
- 

solution, then a C A. 

- 
Proof: Suppose u E a for some p tz G, and that u k A. Then 

3 v  E U, v f u, such that v dominates u. But this implies, 

for any p E z, that J(p, V) 4 J(p, U) and hence u i s  not 

the unique solution of P(p) .  

DaGunha and ~ o l a k '  ) prove that, if J.(u) i s  a convex function 
1 

for all i and U i s  a convex set, then 

A G E  
The proof, which is long, i s  omitted here. 

Note that solutions on the boundary of a correspond to weighting 

vectors p with one o r  more  zero  components. Since such solutions 

completely ignore the interests of the players whose weightings a r e  



zero, they a r e  of little interest to us. Thus for a l l  practical purposes, 

the entire noninferior set can be found by solving scalar  minimization 

problems whenever the conditions a r e  such that ( 2 .  10) holds. 

There a r e ,  in fact, less restrictive conditions under which 

(2.10) holds; they depend on the idea of 

Definition: Let P be a convex cone. A se t  A i s  said to be 

, i f  for any x ,y  E A and any X, 0 .-( X .-( 1, 

X x  t (1 - X)y t p = z ,  where z ~ A a n d p  E P. 

N Let E ~ -  denote the negative orthant in the euclidean space E . 
Theorem: If the set Z = {J I J = [Jl(u),  . . . , ~ ~ ( u ) ] ,  u E U) 

(i. e . ,  the se t  of a l l  feasible cost vectors) i s  E*--directionally 
- 

convex, then A C a. 
Instead of proving this formally (see Ref. ( 7 )), we illustrate the idea 

with some simple diagrams for the two-player game. 

- - - - -- 
- -- -- 

a 

Fig. 2. 1. A case where Z i s  not convex but A 6  a;2. 

*This concept i s  not used in  the remaining sections. The reader may 
skip to the top of page 2-13 .  



N- A case where Z i e  E -directionally convex but not convex i s  

shown in Fig. 2. l .  

- 
Note that only contains solutions which lie in the convex 

hull of 2. Thus (2. 10) can hold only i f  a l l  the noninferior solutions 

lie in the convex hull of 2. Fig. 2 . 2  illustrates a case where (2. 10) 

does not hold. Note that Z is  not E~- -d i rec t iona l ly  
Z 

convex. 

- 
Fig. 2 . 2 .  A case where A$ 52. 

- 
Finally, Fig. 2. 3 i l lustrates a case where $ A. Note that such 

a counterexample requires a p which i s  in but not in  M, since 52 C A 

always. Note that, for p = [l, 01, P(p) does not have a unique solution. 
- - - -  - - - 

SOLUTIONS 

Fig. 2. 3 .  A case where Bk A. 



When convexity conditions a r e  such that 2.1 0 holds, a the non- 
- 

inferior solutions can be found by solving for a. However, solutions - 
lying on the boundary of 0 must still  be checked to see if they a r e  non- 

inferior. ~ l i n ~ e r '  ' has given a counterexample to demonstrate this.  

The members of the noninferior set  A a r e  not ordered by  the 

vector criterion. The , equivalent ( i f  the problem 

if scalarizable) to selecting a p E M, can thus not be solved unless 

further rules a r e  specified, 

2. 6 Minimax solutions 

When a player believes that the other players will play Nash 

equilibrium strategies, he should also play the Nash strategies. But 

if he cannot be sure how his rivals will select their strategies, he 

may instead choose to minimize his cost against the worst possible 

set  of strategies which they could choose. 

Definition: A strategy ui e U. i s  
1 

i f  for al l  

max 

rnax 

Note that only the ith player Is cost function enters into the 

determination of his minimax strategy. This i s  equivalent to finding 

the equilibrium solution of a 2-player zero-sum game, where the 

opponent of Player i chooses a l l  the strategies except the ith and t r i es  

to maximize J Player i can also calculate his minimax cost 5 If 
i' i '  
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- 
he plays vi, he will pay no more than Ti. He will probably pay much 

less,  since the other N - 1 players, each with his own cost to mini- 

mize, a r e  unlikely to choose the combination of strategies which 

maximizes J. (they may for example play their own minimax s t ra -  
1 

tegies). Since it  fails to take account of the other players ' cost 

cri teria,  and since it i s  excessively pessimistic, the minimax solution 

i s  somewhat unsatisfactory in the nonzero-sum game. In some 
- 

reasonable, well-behaved games, Ji = m. Of course, in the 2-player 

zero-sum game, the Nash solution, i f  i t  exists,  i s  also minimax, but 

this i s  not t rue when N > 2, nor in a nonzero-sum game. 

2. 7 Coalitions 

The most important new feature arising from the extension from 

2 players to ,N players i s  the possibility of coalitions among groups of 

players. In Section 5 we have already considered one special coalition - -  
the one involving a l l  the players, with no "side payrnents It allowed. 

There a r e  many papers in  the game theory literature 

dealing with various aspects of coalitions, for  example, the existence of 

solutions which a r e  stable against the formation or  the disolving of 

certain types of coalitions. However, very little of practical importance 

can be said unless str ict  rules governing the formation and enforcement 

of coalitions a r e  postulated. 

In dealing with differential games, we shall (with the exception of 

noninferior solutions) leave the possibility of coalitions a s  a topic for 

further research. 



In this section the ideas presented in this chapter a r e  i l lustrated 

by a two-player, nonzero-sum game involving the minimization of 

continuous functions. 

Consider the game 

Player  1 : min  

u1 
Jl (y, u2) 

min  
Player  2 : 

U2 
JZbl ' u2) 

where ul  and u2 a r e  s c a l a r s  and where the functions J1 and J2 a r e  

assumed to be convex and twice differentiable with respect  to both 

arguments.  

Equicost contours in the space (ul, u2) a r e  plotted for J1 in 

Fig. 2.4a and for JZ in Fig. 2.4b. 

Fig. 2.4a Fig. 2.4b 

Suppose now that u2, a variable over which P layer  1 has no 
- 

control, is fixed a t  level u2, a s  indicated in  Fig. 2 . 4 ~ .  Then the  best 



- 
Player  1 can do i s  to minimize J l  along the line uZ = u2. Clearly 

this i s  achieved by choosing u l  such that the cost contour i s  tangent 
- 

(externally) to the horizontal line u2 = u2. The locus of such points 

for all possible u i s  given by the dashed curve in Fig. 2 . 4 ~ .  It i s  2 

the locus of points where the cost contours of J a r e  horizontal.* 1 

Similarly,  i f  P layer  2 must  optimize against a given Zl ,  the 
- 

resul t  i s  a u such that the line ul = ul i s  tangent externally to  the 2 

cos t  contour of J2 .  The locus of such points (where the cost contours 

of J2 a r e  vert ical)  i s  given by the dashed curve in Fig. 2.4b. 

Superimposing Fig. 2.4b on Fig. 2 . 4 ~  then shows us the Nash 

solution; i t  i s  the intersection of the two dashed curves i n  Fig.  2. 4d. 

\ 

Fig.  2 . 4 ~  Fig. 2.4d 

Our assumptions about J1 and J2 a s s u r e  that if there  i s  a Nash 

equilibrium, i t  is the solution of the coupled nonlinear equations: 
1 

*These points a r e  the set of "rational solutions for  P laye r  1. 



A convenient procedure for  solving (2.12) i s  to extend the familiar 

Newton-Raphson method: expanding (2.12) about the most recent 

- - 
iterative solution u y ) ,  u F )  and evaluating a t  the Nash solution u l ,  u2 

gives 

Jlu(k)  + J (k)U (El - Ulk))  + J (k) (G2 - U P ) )  = 0 
1 lUl 1 l U l  u2 

J (k) + J (k) (Z1 - U p )  + J (k) (G2 - U P ) )  = 0 
2U2 2U2 u1 2u2 U2 

(where higher order t e rms  have been dropped). Solving these approxi- 
- - 

mate equations for u u2 and letting the result  be our next iterative 

solution ul ) , u2 ), we have the algorithm 

The generalization to rnore than two players i s  obvious. 

It can be seen in Fig. 2.4d that both players could simultaneously 

achieve a better result than the Nash solution. The solutions which 

dominate the Nash solution a r e  shown a s  a shaded region in Fig. 2.4e. 
- - - - - - --- -- - --  -- 

"2 

Fig. 2.4e Fig. 2.4f 



It should be c lear  that the noninferior solutions a r e  those points 

where the cost contours of J and J axe tangent externally. These 
1 2 

a r e  the only points which a r e  undominated. The noninferior se t  i s  

the dashed curve in  Fig. 2.4e. As usual, i t  i s  a (N - 1)-parameter  

family of solutions when there a r e  N players (in this case, N = 2). 

To illustrate minimax solutions, we add the assumption that the 

feasible ranges for u and u lie between upper and lower bounds indi- 1 2 

cated in  Fig. 2.4f. Player  1 then ignores J2 and t r i e s  to optimize J1 

against the u2 which would hurt him most.  This leads to the pessi-  

mist ic  assumption that u2 will be chosen a t  i t s  upper bound, and 

consequently Player  1 choses il. By s imi lar  reasoning, Player  2 

chooses assuming pessimistically that u will be chosen a t  i t s  2' 1 

lower bound. The resulting costs when Gl and G2 a r e  played a re ,  of 

course, a pleasant surpr ise  to both players.  In this case, the result  

happens to be worse than the Nash solution for Player  2 but bet ter  for 
1 

Player  1. 

Even when the functions J1 and J2 a r e  convex and well-behaved 

a s  the ones we have considered, i t  may happen that there is no Nash 

solution. Such a situation i s  i l lustrated in Pig. 2. 5.';' Note that the 

noninferior solutions stil l  exist. If constraints a r e  added a s  in Fig. 

2.4f, minimax solutions will a lso exist. Because the sets  of rational 

solutions for Player  1 (upper dashed line) and for Player  2 (lower dashed 

line) do not intersect,  there i s  no Nash solution. 

*It has been pointed out by K .  Arrow that the nonexistence of the Nash 
solution in this example depends on the fact that the se t  of feasible 
controls i s  unbounded. 



e I 

Fig. 2.  5 

Some of the basic features of general nonzero-sum games have 

been introduced a s  a background for the discussion of differential 

games to follow. There a r e  N players, each trying to select a s t ra -  

tegy to minimize his cost criterion. The interests of the players are 

not diametrically opposed, so there i s  an incentive to seek "cooperativew 

solutions, if such agreements can be enforced. 

There i s  no single satisfactory definition of a "solution" to a 

nonzero-sum game. One type of solution, the Nash equilibrium, is  

secure against unilateral attempts by any player to optimize. If agree- 

ments can be reached and enforced, i t  i s  usually possible for al l  players 

to simultaneously achieve better results than the Nash solution. The 

set  of noninferior solutions includes a l l  solutions which a r e  undominated. 

Finding this set,  from which a "negotiatedfi solution would be chosen, is 



sometimes equivalent to  solving an (N - 1)-parameter  family of 

optimization problems. The information needed to select  a part icular  

member  of the noninferior se t  is often not included in  the formulation 

of the game. 

If a player i s  unsure of what rationale his rivals a r e  using, he 

might choose to  minimize his  worst possible cost by choosing his  

minimax strategy, which can be found by solving a two-person, zero-  

sum game. 

All of these ideas were i l lustrated by a two-person game designed 

to give the kind of graphical insight which may  be useful in  studying 

differential games. 



CHAPTER III 

DIFFERENTUL GAMES 

3.  1 Introduction 

In the general N-player differential game, the ith player 

(i = 1 , .  . . , N) wishes to choose his ftcontrolH u. a t  each time t i n  
1 

the interval [to, tf] to minimize 

subject to the constraint (common to all players) 

where x i s  a "state vector" of dimension n. There may also be in- 

equality constraints on the control and/or state variables, but at 

this stage of the discussion such constraints need not be defined 

formally. The terminal time t may be fixed o r  variable; we shall f 

generally consider i t  fixed, 

When N = 1, the differential game i s  an 

One naturally expects that extensions of various well-known results 

in optimal control theory will be useful in studying differential games. 

In fact, i t  would be foolish to even attempt to analyze an N-player 

differential game i f  the l lcorresponding~~ optimal control problem can 

not be solved by known methods. 



With -more than one player, the differential game st i l l  resem- 

bles an optimal control problem, but now game-theoretic considera- 

tions, such a s  those discussed in  the previous chapter, complicate 

the situation. Recall that a general nonzero-sum game cannot be 

"solved fl until one specifies what properties the llsolutionli should 

have. Similarly in a differential game, one must demand that the 

solution have some attribute such a s  minimax, Nash equilibrium, 

noninferiority, stability against coalition formation, etc. 

One must also specify what information i s  available to each 

player during the course of the game. We shall always assume that 

each player knows the various parameters of the problem, including 

his rivals ' cost cri teria.  

We shall generally make one of the following two additional 

assumptions: either (i) each player has continuous perfect measure-  

ments of the state vector x throughout the course of play, or  (ii) no 

such measurements a r e  available to any playe r .  These assumptions 

will be called "closed loopf1 and "open loop," respectively. 

Of course, many other assumptions about the type of informa- 

tion available to the players might be considered, It i s  perhaps 

worthwhile to list  some of these possibilities, even though none of 

them will be pursued further in the remaining chapters, 

1) Theplayersrnaycont inual lyreceive  o f I 

the state vector. Some very special stochastic zero-sum 

differential games have been analyzed ( l o 9  but the general 

nonzero-sum stochastic differential game seems beyond the 

present state-of -the ar t .  



2 )  Some players operate "open loopi1 while others operate 

ltclosed loop." Or perhaps a choice i s  offered, with a 

"measurement cost" assessed to those players who choose 

"closed loop" operation. 

3)  Although the controls a r e  applied continuously, the players 

receive perfect measurements only a t  discrete times 

("sampled data feedback controls 'I). 

4) The players do not have complete knowledge of a l l  the para-  

meters  of the game (such a s  the exact cost cr i ter ia  of the 

rivals) and must deduce them by measurements of the state 

vector during the course of the game. Such problems might 

loosely be termed "adaptive differential games. 

5) Each player receives perfect measurements of some (not al l)  

components of the state vector. 

6 )  The players receive perfect measurements but they a r e  not 

sure what rationale (i. e. , minimax, Nash, coalition, etc . ) 
their rivals a r e  using. 

While a l l  of these possibilities a r i se  in practical applications, i t  i s  

obviously hopeless to t ry  to analyze them until we have made some 

progress in the simpler open loop and closed loop "deterministic If 

differential games. Thus the five suggestions above a r e  left a s  topics 

for future research.  

When each player uses a strategy which i s  optimal against his 

rivals strategies, the result i s  the Nash solution, defined formally 



in eq. ( 2 . 4 ) .  We have already seen that Nash solutions a r e  non- 

optimal in the sense that it i s  usually possible fo r  a l l  players simul- 

taneously to obtain lower costs,  but this better resul t  can only be 

achieved i f  the players can be trusted not to t r y  to minimize their 

individual costs.  In situations where I f  cooperative " arrangements 

cannot be made o r  enforced, our interest  centers  on the inefficient 

but "secure1'% Nash solution. Of course, in some games Nash 

solutions may not exist, while other games may have more  than one 

Nash solution. 

If the ith player i n  a differential game knew the Nash strategies 

of his  rivals,  he could find his own Nash strategy by solving an  

optimal control problem. Our approach to the problem of finding a 

se t  of Nash controls for a l l  N players i s  then to use methods known 

in  optimal control theory to solve the optimization problem for each 

player i n  t e rms  of the other players ' (stil l  unknown) controls. Then 

by demanding consistency among these N solutions, we can hopefully 

solve for the N Nash strategies.  

The usual procedure for solving optimal control problems is  to 

obtain a se t  of with the following properties: 

1) An algorithm can be devised for finding (numerically) a l l  

controls which satisfy these conditions. 

2) The conditions are strong enough so that only a few controls 

(hopefully only one) satisfy them. 

*The Nash solution i s  secure only against 
optimize, not agains"r:oalitions involving two o r  more  rivals.  



3) A test i s  available for verifying whether o r  not a particular 

control actually i s  optimal. 

We shall res t r ic t  our attention to differential games where the 

"corresponding" one-player game can be solved by this approach. 

It may be objected that the discussion below does not t rea t  

differential games in their most general form. Fo r  example, problems 

with inequality constraints and singular problems a r e  not given the 

attention they deserve. However, even the relatively simple un- 

constrained, nonsingular differential game provides an  adequate 

means for illustrating the general features of differential games. 

We shall see that even with these restrictions, i t  i s  not easy to com- 

pute Nash solutions. 

In Section 1 we discussed the types of information which might 

be available to the players and we decided to res t r ic t  our attention 

to two cases:  no measurements (open loop) o r  perfect measurerneirts 

(closed loop) of the state vector by a l l  the players. We shall see that 

a differential game may have both an open loop and a closed loop Nash 

solution, and that these solutions give different paths and costs.  This 

result may surprise the reader who i s  familiar with the theories of 

optimal control and two-pe rson zero -sum differential games. 

Consider a general differential game of the kind described by 

( 3 .  l) ,  ( 3 . 2 )  where there a r e  no inequality constraints on the state o r  

control variables and no restrictions on the terminal state. Let the 



terminal time t be fixed. If the ith player i s  given the open loop f 

Nash control functions u'F(t), j { i, for al l  his rivals, then he can 
J 

obtain a set of necessary conditions for his own open loop Nash 

control uT(t) by variational methods which a r e  well-known in optimal 

control theory. 

th Define the "Hamiltoniantit for the i player: 

where X. i s  a vector of dimension n. Then since u%(t) must minimize 
1 1 

Ji when the other players use their Nash controls, the following first  

order necessary conditiolzs must hold: 

k = f(x, t, uSk, (t),  . . . u* (t))  
1. y N  (3.4) 

A second order necessary condition i s  that, along the "Nash path," 

H. i s  positive semidefinite 
1U. U. 

1 1  

while a sufficient condition for u? to be a t  least locally minimizing 
1 

i s  that, along the Nash path, 

H. i s  positive definite 1u. u. 
1 1  

The problem is  said to be if  ( 3 . 8 )  holds for almost a l l  

t E [to, tf] and for all possible control functions ui(t). 

*More precisely, the "Nash open loop Hamiltonian. 'I 



Eqs. ( 3 . 4 ) ,  (3.5) and ( 3 . 6 ) ,  for  i = 1 , .  . . , N, provide a se t  of 

necessary conditions for  the entire N-tuple of Nash open loop control 

strategies. In some examples, the N coupled (vector) algebraic 

equations (3 .  6) can be solved, either numerically o r  analytically, 

to obtain a unique control N-tuple {ul, . . . u } a s  a function of ' N  

~ , ~ 9 ' ~ 9 " " 2  h ~ *  Often i t  can also be that ( 3 . 8 )  holds for this N-tuple 

for any x9 t, X I , .  . . , XN. When this i s  the case, the controls can be 

eliminated from ( 3 . 4 )  and ( 3 .  5), leaving a nonlinear two-point 

boundary value problem with n differential equations with given ini- 

t ial  conditions and nN with terminal values specified a s  functions of 

the terminal state. Various iterative algorithrns a r e  available (12, 13, 14) 

for solving problems of this type when N = 1. One would hope that 

some of these methods could be extended to the differential game 

(N > 1). 

It should be noted that the ith playerls Hamiltonian i s  extrernized 

only with respect to his own control; generally 

Hiu j c O  for i f  j 
j 

This fact i s  the source of considerable difficulty when one attempts 

to compute Nash equilibria. 

were given the closed loop Nash strategies 

Qj(x, t ) ,  j # i9 for a l l  his rivals, he could find his own closed loop 

Nash strategy Q.(x, t ) ,  by solving optimal control problems starting 
1 

from each point in the state-time space (i. e. , by "filling the space 

with optimal trajectories I t ) .  



One way to do this i s  to use variational necessary conditions 

similar to those used for the open loop control above. However, now 

the dependence of the r ivals t  controls on x must be included in con- 

sidering variations of the ith player's control. Defining the i th. 

Hamiltonian a s  in eq. ( 3 .  3 ) ,  the closed loop necessary conditions 

a re ,  for i = 1 , .  . . , N  

u = \Y. (x, t )  minimizes H. (x; t; Bl, . . . , QiYi_ ui, Qitl, . . . QN; Xi) i a 1 

(a.  14) 

Notice that when N = I (optimal control problem) the second t e rm in 

( 3 . 1 2 )  i s  absent. The optimal "closed loop1' control u(x, t) can then 

be obtained by solving for the "open loop" optimal control u(t) for 

every initial point ( x ,  t ) .  This method i s  not valid in the N-player 

game, however, due to the summation te rm in (3.12). In the optimal 

control problem, these necessary conditions a r e  a se t  of ordinary 

differential equations, b u t i n  the N-player nonzero- sum game, they 

a r e  a set  of partial. differential equations, generally very difficult to 

solve . 



The presence of the summation te rm in (3. 12) makes the 

necessary conditions (3.11)-3. 14) virtually useless for deriving 

computational algorithms. Note that this troublesome term i s  ab- 

sent in the optimal control problem (because N = I ) ,  in the two- 

aH1 person zero-sum game (because H1 = -Hz so ----- = - aH2 

&2 
= O ) ,  

a*. 
and in the open-loop nonzero-sum problem (because = 0 ) .  One ax 
certainly expects the open and closed loop solutions to be different 

whenever this term i s  nonzero. 

Using reasoning familiar from optimal control theory, one 

may interpret (3 .  12) a s  follows : hi i s  the I1influence functionf1 for 

th 
the i player, i. e .  , the sensitivity of his cost to a perturbation in  

the state vector. If the other players a r e  using feedback strategies, 

any perturbation 6x of the state vector will cause them to change 

a*. 
their controls by an amount 6x. If the ith Hamiltonian were al- 

ax 

ready extremized with respect to the control u , j # i, this wouhd not 
j 

aHi 
affect the ith player's cost, but since generally - # 0 for i f j, 

au 
j 

the reactions of the other players to the perturbation will influence 

the ith player's cost, and the ith player must account for this effect 

in  considering variations of the trajectory. 

A more  satisfactory procedure for dealing with 

controls i s  the value function approach. Let jd(x, t )  = {jdl(x, t ) ,  . . . , BN(x, t))  

be any set'k of control strategies for  the N players (resulting in piecewise 

*Strictly speaking, the set  b(x, t )  must be defined so that the trajectory 
x ( t)  satisfying ( 3 .  11) could be continued from any initial point (xo9 to).  d 



continuous u.(tj), and let x (t) denote the trajectory through x(t ) 
1 B 0 

resulting when these controls a r e  used. Then the value function 

associated with this strategy set  i s  piecewise continuously differ - 
entiable and defined a s  

When b(x, t )  i s  a Nash strategy N-tuple, the functions defined in (3 .  15) 

will be called Nash value functions. Since these a r e  the only type to 

be discussed here, the argument & of V. will be suppressed. One 
1 

should remember, however, that some differential games have more  

than one closed loop Nash solution; a different value function then 

exists for each Nash strategy N-tuple. 

By applying the definition of the Nash property (2.4), the usual 

"principle of optimalityH argument can be extended in an  obvious way 

to show that the value functions V. (x ,  t) ,  i = 1, . . . , N, a r e  solutions of 
1 

the partial differential equations 

av. 
I avi - -  

at - -minHi(x; t;Q1,.  . . ,92i!i-1, U ~ , X Q ~ + ~ ,  . . . ,\YN; ;j;;.) (3.16) 
u : 

where 

This i s  the generalized Hamilton- Jacobi-B ellman equation. The 

equilibrium strategy Qi(x, t )  i s  the control ui which achieves the mini- 

mum in ( 3 . 1 6 ) .  To integrate (3.16) backward from the terminal 

manifold, we must be able a t  each (x, t )  to find the @Wash saddle-pointts 

of the vector Hamiltonian H = [El1, . . . ,HN]' i. e . ,  to  solve an ordinary 



continuous nonzero-sum N-player game (not a differential game) a t  

every instant t. This i s  not always possible, but it  i s  possible in 

a n  important class of games. A differential game is said to be normal 

i f  (i) it i s  possible to find a unique Nash equilibrium point @(x, t, X1, . . . , IN) 

for the vector H for a l l  x, h and t, and (ii) when the equations 

a r e  integrated backward from all  the points on the terminal surface 

feasible trajectories a r e  obtained.+ The next chapter considers a 

c lass  of games which a r e  normal. 

3 .  3 Noninferior solutions 

If i t  i s  possible for a l l  N players in  a differential game to agree, 

pr ior  to the starting time t to coordinate their strategies, then the 
0' 

resulting set of controls should be chosen from the noninferior set 

of solutions, defined for the general game in eq. (2. 5). We have 

already seen in Section 2.  5 that finding the set  of noninferior solutions 

to a "static 'I game i s  equivalent to solving a minimization problem 

with a vector cost function. Si ' 

sets  for an N-player differential game is equivalent to solving an optimal 

+Note that condition (i) requires that a unique set  of controls giving a 
Nash point of H(x, t, u, X) can be found a s  an explicit function of x, t, 
and X for any X. This i s  a sufficient (but not necessary) condition for  
the existence of a Nash trajectory. It i s  relatively easy to determine 
i f  (i) i s  satisfied, since no differential equation need be solved, 



made in Section 2. 5 still apply, since they depend only on properties I 
of the set of feasible results in the cost space E ~ ,  not on how these 

results a r e  obtained. However, in an optimal control problem it  i s  I 
impractical to t ry  to generate the se t  Z of feasible results.  Unless 

the functions involved in the cost cr i ter ia  J1 , . . . , J a r e  very N I 
special (e. g., convex in all  the controls) there appears to  be no 

practical way to answer the a,ppropriate questions about the convexity I 
properties of Z .  

Whether o r  not these questions about Z can be resolved, we can 

in any case obtain some of the noninferior solutions by finding the set  

62, the set of solutions of al l  problems P(p ) ,  where p. E M (see defini- 

tions in eq. (2. 7)). For  the differential game, the problem P(p)  i s  I 
an optimal control problem with a scalar  cost criterion: 

tf 
P(p):  minimize J ( p )  = P ~ [ K ~ ( X ( ~ ~ ) )  + Lib ,  t, u p  . y 

U1' " " 
9 u~ i= 1 to 

subject to 

j; = f(x, t ,  u l ,  . . . , U N )  , x(to) = Xo 

where I 

the interests  of the players entering the agreement. Since i t  i s  hard 

to see why any player should accept zero weighting on his cost criterion, 



m 

the question of whether or  not all  the solutions in 6% a r e  noninferior 

i s  probably not important a s  far a s  negotiations a r e  concerned. 

However, the situation could be a s  in Fig. 2 . 2 ,  where an apparently 
- 

Itreasonable" portion of the efficient set  A i s  not included in i;&. In 

practical applications, i t  might be possible to tel l  whether o r  not 8-2 

contains a l l  the I1negotiable solutions. Even if this can not be deter-  

mined, i t  is certainly useful to compute the N - 1 parameter of solutions 

which generate a, since they a r e  always noninferior and they can be 

used to eliminate large portions of the cost space from consideration. 

DaCunha and ~ o l a k ( '  5, have extended the Pontryagin maximum 

principle to obtain a se t  of necessary conditions for a solution of an  

optimal control problem with a vector cost criterion. Letting 

L = [ L ~  . . . , LN] , u = [ul, . . . , uN] , etc. 

we can state these conditions in our notation: 

The vector optimal control problem i s  to find a control G( t ) ,  

t t t f9 and a corresponding trajectory B(t) determined by ( 3 .  2 ) ,  
0 

such that 

(i) h(t) is a measurable, essentially bounded function whose range 

i s  contained in  an arbi t rary  but fixed subset U of E ~ .  

(ii) For every control u(t) and corresponding trajectory x(t) satis- 

fying (i), the relation 

(componentwise) implies 



Let G(t) be a control which solves the vector optimal control problem. 

Assume f(x, t, u) aad L(x, t, u) a r e  continuous in u and x and a r e  con- I 
N tinuously differentiable in x. Then there exists a vector p E E , 

p 3 0, and a vector function X(t) e: E ~ ,  with [p, 3-l f 0,  such that 

(i) 
" T x (t) = -p 

T 
ax - xT(t) ax 

T T 8K(2(tf), tf) 
(ii) (tf) = P 

ax 

(iii) for every v E U and almost al l  t E [to, tf], 

Note that if y # 0, then we can scale the problem so that p. = 1 ,  2 1 
i= 1 

We then recognize the necessary conditions for problems of the type I 
P(y) ,  where t ~ .  E %. h fact, a contains al l  solutions which satisfy 

the above conditions except those for which p. 0 (al l  components). 

But when p 0, the solution to (i), (ii) above i s  X(t) = 0,  which i s  not 

allowed. Thus there appears to be no difference between the neces- I 
sary  conditions for the vector optimal control problem and for solu- - 
tions in a. 'Thus the necessary conditions a r e  not strong enough to 

- 
distinguish between the sets and A. 

We conclude that we can find at  least some (and perhaps all) s f  

the set of noninferior solutions to a differential game by solving an 



(N - 1)-parameter family of optimal control problems, where the 

parameters a r e  the relative weights on the various players ' costs.  

Even i f  this set  6-2 of solutions (or  i t s  closure) does not contain al l  

the efficient solutions, i t  may be satisfactory as a negotiation set. 

For  example, i t  may contain al l  the efficient solutions which domi- 

nate the "threat point" (the result if no agreement can be reached). 

The problem of how to decide which member of the noninferior set 

to implement (the bargaining problem) cannot be solved unless further 

rules a r e  specified. 

3 . 4  Minimax solutions 

If the ith player has no idea of what rationale his rivals are 

using (perhaps he does not even know their cost functions) then he 

could make the pessimistic assumption that al l  the other players 

will join forces to t ry  to maximize his cost. Player i thus envisions 

himself a s  playing in a two-person zero-sum differential game : 

minimize maximize Ji  = K. (x(tf)? tf)  + Li(x, t, u)dt 
U 

1 

i u19. a .  9 ui-lj Uit19 * +N to 

subject to 

5c = f(x, t, U1, . . . , uN) , x(to) = Xo 

If no measurements a r e  available to Player i, then the function u . ( t )  
1 

which minimizes the worst damage which the other players can inflict on 

him i s  his open loop minimax strategy. Of course, the controls of the 

other players which the ith player obtains from his calculation a r e  not 

actually their minimax controls. To obtain the minimax controls 



- 
uj, j = 1, . . . N we must solve N separate two-person zero-sum 

differential games. When these controls a r e  implemented, the re -  

sulting trajectory and costs will not be those predicted by any of the 

players (unless the game really i s  two-person zero-sun?). Generally 

a l l  players will achieve better than their minimax costs.  

If the ith player has continuous perfect measurements of the 

state vector, then when he implements his minimax control he will 

notice, after a very short tirne, that the trajectory x(t) does not 

correspond to his expectation; this i s  of course due to the other 

players not trying to maximize the ith player's cost. But player i 

may assume that, although they have not done so so far ,  they will at  

al l  future times t ry  to maximize his cost. He must then calculate 

a revised minimax strategy at each (x, t ) .  Such a strategy 5. (x, t )  
1 

i s  a closed loop minimax strategy. It has the same disadvantage a s  

the open loop minimax solution - -  i t  i s  excessively pessimistic. xc 

*Ref. 131 discusses some interesting new phenomena which a r i se  in 
nonzero-sum differential games, such a s  the important difference 
between open loop and closed loop solutions and the relationship be- 
tween Nash solutions, noninferior solutions, and the "principle of 
optimality. I' These phenomena a r e  illustrated by sonle simple multi- 
stage discrete (bimatrix) games. 



CHAPTER 

LmEAR-QUmRATIC DIFFERENTML GAMES 

This chapter considers a special c lass  of differential games 

where the system is linear and the cost  functions a r e  quadratic 

functions of the state vector and controls. Like i t s  counterpart  in  

optimal control theory, the linear-quadratic differential game 

(LQDG) is analytically tractable and of some pract ical  interest ,  

It i s  useful in  modelling a situation where each player is trying to 

regulate a n  output of the common l inear  system, i. e. , each player 

t r i e s  to make his particular output (a  l inear  function of the s tate  

vector) follow as closely as possible some prescribed program, 

without expending too much control effort. 

The LQBG i s  probably the only non-trivial c l a s s  of differential 

games in which the Nash solutions, both open and closed loop, as 

well a s  solutions based on other rationales, can be obtained exactly 

without difficulty. 

4. 2 Definition 

In a linear-quadratic differential game (LQDG) with N players ,  

the ith player chooses u. trying to minimize 
1 

*The material  in  Sections 4. 1-4. 5 was presented (in l e s s  detail) in 
Ref. [ 2 ] .  



subject to 

where Qi, Gij, Rijk7 ai, ci, A, Bi, and w a r e  functions of time 

known to a l l  the players. Depending on which type of solution i s  

sought, the controls u. may be functions of time only, o r  of the 
1 

state vector and time. 

This i s  the most general form of the L&DG.* However, all  

of the interesting features of this problem can be exhibited by con- 

sidering a simpler, less cumbersome version where the c ros s  

terms,  linear terms,  and inhomogeneous terms are omitted: 

subject to 

*The addition of inhomogeneous te rms  to the cost cr i ter ia  would not 
affect the solutions. 



Ln the remainder of this chapter, only the problem (4 .  3) ,  (4.4) will 

be considered. The corresponding equations for the general LQDG 

a r e  presented for reference purposes in Appendix A. 

Since infinitely negative costs can be achieved if Rii has any 

negative eigenvalues, we shall always assume that R..  i s  positive 
11 

semidefinite for al l  i. If Rii i s  positive definite for  all  i, the problem 

i s  Unless otherwise stated, we shall always assume in 

this chapter that the game i s  nonsingular. 

The Nash solutions, either open loop or closed loop, can. be 

obtained by applying the results of Chapter 111. 

t h In the open loop case, from the point of view of the i player9 

the controls of the other players must be considered functions of  

time only. Either the variational necessary conditions ( 3 . 4 ) - ( 3 - 6 )  

or  the value function approach ( 3 . 1 6 )  can be used, but if the latter 

i s  used the partial diflerential equation ( 3 . 1 6 )  must f i r s t  be converted 

(via separation of variables) to a set  of ordinary differential equations 

before any relation can be assumed between the other players kcoaa- 

t rols  and the state vector. Consequently, i t  i s  eas ier  to solve the 

open loop problem by applying the variational necessary conditions, 

W h e n  all controls except the ith player's a r e  treated as given 

functions of time 9 .(t), j $ i, the variational Hamiltonian for tbe i 
th 

J 
player i s  



4: + hi (Ax + Biui + 

The necessary conditions for the ith player a r e  then 

and the state equation becomes 

Eq. (4.6) (for i = 1 , .  . , , N) and eq. (4.8) a r e  a linear two-point 

boundary value problem consisting of M + 1 coupled vector differen- 

tial equations, each of thk same dimension a s  x. To solve it, we 

define the square matrix Si(t) by 

Xi( t )  = Si(t)x(t) i = 1, . . . , N (4.9) 

Conditions (4.6) and (4.8) a r e  then satisfied when Si(t) is a solution 

T -1 T Bi = -A si - S ~ A  - ai t s.B.R.. B. s 
1 J J J  J j 

j=l 



Note that (4. 10) i s  a set  of M coupled quadra.tic matrix differeatia.1 

equations. However, S. i s  in general (One may 
L 

verify that the a s p m e t r i c  part of (4.10) ha,s a nonzero driving term. ) 

When the Nash open loop strategies 

t h a r e  played by each player, then the cost paid by the i player is 

where Pi(t) i s  the solution of the linear differential equation: 

N 
T P = -A Pi - PiA - Q. + - 1  T T - 1  T. 

i 1 
(P.B.R.. B. S. + S .  B.R.. B. Pi 

1 J J J  J J J J J J  J 
j=1 

Pi(tf) = Sif (4, 93) 

1 T 
This result i s  easily obtained by assuming the form ~ x ( t )  Pi(t)u(i) 

for the remaining part of the cost starting from t. Equating this ~ ~ 4 t h  

the cost function defined in  (4. 3) and differentiating then yields ( 4 . 1 3 ) ,  

Note that the N matrix equations in (4. 13) a r e  uncoupled.* 

The reader who i s  surprised by the asymmetry of (4.10) may 

find it  instructive to follow the alternate derivation of these results,  

which i s  presented in Appendix B. It will be seen there that the 

*Note also that the S. come from the open loop lfRiccati-like fr eq,ua"eiora 
(4. 10) and are rnerbY parameters in the linear equations (4. ? 3). The 
reader should not confuse (4. 13) with (4. 17)  in the next sectior~..; they 
have different solutions because the S. a r e  different. 

J  



I 
multiplier hi may be interpreted a s  V. (x(t), t ) ,  where V. (x, t)  is  

1X 1 

the ith optimal return function based on the assumption that the other 

players do not change their control functions u.(t), j / i. 
J 

When the players a l l  have measurements of the state vector, 

the Nash equilibrium strategies can be found either by using the closed 

loop variational necessary conditions (3. 11)-(3.14) o r  by the value 

function approach (3.16). We choose the latter because it  i s  concep- 

tually clearer .  Note that x must be treated a s  an  independent variable, 

For  the LQDG the value function equation (3.16) is 

N 
1 T 1 T 1 T -V. (x, t )  = min [ Z  x Qix + 2 ui Riiui t 2 a. (x, t)R. ..%I. (x, t) l t  

U. J 1J J 
1 

+ V. (x, t){.Ax C Biui t ), Bj%Pj(x, t)}] 
1X 

The minimizing controls a re ,  for i = 1, . . , , N 

Substituting (4. 15) into (4.14) and guessing the following separation s f  

variables : 

one immediately verifies that (4. 16) i s  the solution to (4.14), where 

Sj(t) i s  the solution of 



- 1 -1 'T - S.B.R. .  R . .R . .  E .  S 1 
J J J J  1~ JJ J jf 

This set of N coupled symmetric quadratic matrix differential equa- 

tions will be called "generalized Riccati equations, It since i t  reduces 

to the familiar Riccati equation of optimal control theory when N = 1. 

The closed loop Nash costs a r e  then given by (4.16) evaluated a t  

It i s  also straightforward to obtain these same results using 

the closed loop variational necessary conditions (3. 11) -(3.14). 

It i s  evident from the fact that R ( j  # i) appears in (4. 119) but 
i j  

not i n  (4.10) that the open loop and closed loop Nash controls will 

be different. Even when R..  = 0, the equations a r e  not the same. 
1J 

However, in  the optimal control problem (N = 1) both (4.17) and its 

open loop counterpart (4.10) reduce to the well-known Riccati equation 

-1 T k = - A ~ S  - SA - $2 t SBR B S (4. 18) 

Similarly, in the two-person, zero-sum LQDG, which i s  obtained by 

setting 

Q, = -a1 S2f = -Slf 

A 
and trying a solution of the form S2 = -S1 = -S, both (4. 17) and (4. 10) 

reduce to 



in agreement with the results of Ho, Bryson and ~ a r o n " ~ ) .  But 

excepting these two special cases,  the open loop and closed loop 

solutions generally do not coincide. 

If both the system and the cost parameters a r e  time-invariant, 

one often i s  interested only in the steady state feedback solutions. 

These can be obtained by letting ti+ m The resulting "Nash feed- 

back laws " a r e  then, for  i = 1, . . . , N 

c, 

where the constant matrices S .  a r e  the solutions of the algebraic 
J 

equations obtained by equating the right side of (4.17) to zero. 

4 . 4  Noninferior solutions 

In Section 3.  3 i t  was seen that a t  least of A, the noninferior 

se t  of solutions could be found by solving a (N  - 1)-parameter  family 

of optimal control problems. Whether o r  not this se t  a (o r  i ts  closure 

a) includes 9 of the noninferior solutions depends on the convexity 

properties of Z, the se t  of cost vectors generated by a l l  feasible 

control N-tuples. Specifically, i f  Z i s   directionall^ all^ convex, 

that i s ,  i f  any convex combination of army two points in Z i s  the sum - 
of a vector in Z and a vector in the positive orthant, then 52 contains A. 



Unfortunately, even in the "simple linear -quadratic case, i t  is not 
- 

easy to apply this test.  A sufficient condition for a to contain A i s  

(assuming a s  usual that R.. i s  positive definite for a l l  i) that Qi and 
11 

R..  be positive semidefinite for a l l  i, j. But this condition i s  very  
13 

strong and excludes most  of the interesting cases.  F o r  example, 

in the two-person zero-sum LQDG, Z i s  the straight line Jl  = -J2, 

a convex set ,  yet R 12 = -R22. 

In any case,  whether o r  not we can obtain a l l  the noninferior 

solutions this way, i t  i s  s t i l l  worthwhile to find the se t  a. It may 

turn out that the only "negotiable1' solutions belong to some subset 

of a. 

Fo r  any given weighting vector p, the corresponding member  

of ais easily found by solving a linear-quadratic optimal control 

problem. The controls corresponding to this solution a r e ,  for i = 1, . . . , N 

where 

where pi 2- 0 ,  i = 1 , .  . . , N ,  and p. = 1. Of course,  (4.21) and (4.22) 
21 



hold only i f  p is such that the matrix to be inverted is  positive definite. 

If some of the Rij have negative roots, then there wi l l  be some 

positive vectors p. for which no solution exists,  i. e ,  , the scalar  

cost resulting from such a weighting of the playersf  interests can 

be driven to -a, But such a solution would probably give a t  least  

one player an unacceptably high cost and so would not be thegotiable. g" 

One might wish to compute the costs incurred when the players 

use arbitrary linear feedback controls of the form 

u. = -Ki(t)x 
1 

(4. 2 3 )  

Starting a t  (x, t ) ,  these costs a r e  

where Pi(t),  i = 1, . . . , N, satisfy the N uncoupled linear matr ix  

differential equations 

N 
T g. = -P.A - A Pi - Qi - T T T (K. R..K - P . B . K  - K .  B.  pi) 

1 1 J LJ j 1 ~ j  J J 
j = 1 

This formula can be used to compute the costs  for the individual 

players when the noninferiov controls in (4.21) a r e  implemented. 

4. 5 Minimax solutions 

Finding the minimax control for the ith player i s  equivalent to 

solving a 2-player zero-sum differential game, where the opponent 

of the ith player chooses al l  but the ith control and t r ies  to maximize 



5.. Applying the resul ts  of Section 3. 5, the minimax control for 
1 

the ith player i s  

where 

- N 

si = - S i ~  - ~~5~ - t Si B.R. .  - 1  B.  T- s 
J 1 J  J i  

provided that 

t h If conditions (4.28) a r e  not satisfied, the i minimax control may 

th fail to exist, so the i minimax cost i s  infinite. Note that a mini- 

max  control might exist for  some players and fai l  to exist  fo r  others .  

A case  of interest  i s  Rij = 0 for a l l  i, j # i. In this special case,  the 

minimax control i s  either identically zero  o r  does not exist. 

If Player  i believes the minimax assumption, his minimax 

1 
cost, o r  "security level" i s  -x  S . ( t  )x The actual costs obtained 

2 0 1  0 0' 

when a l l  players use their  minimax controls in  feedback form (4. 26) 

can be computed using (4. 25). 

As a n  example of a nonzero- sum LQDG, Ref. [2] considered 

a generalization of a simple pursuit-evasion model, one of the best-  

known models in the zero-sum differential game theory l i terature.  



The extension to the nonzero-sum model allowed the pursuer and 

evader to have cost cri teria which were not entirely in  conflict, 

The example presented here i s  concerned with heating duplex 

apartments a t  the lowest cost. While the example may seem frivo- 

lous, i t  i l lustrates a case where the between two physical 

systems, separately controlled to achieve seemingly nonconflicting 

goals, produces a differential garne situation. 

A nonzero- sum differential game situation can occur when 

several  physical systems, separately controlled to achieve seemingly 

nonconflicting goals, interact through their common environment, 

When each controller i s  trying to his system to keep certain 

variables close to a prescribed program, then the resulting inter-  

action can sometimes be adequately modeled a s  a 

differential garne. To illustrate this idea, we shall consider a simple 

example involving the heating of several  apartments in a single buildil~g. 

Each apartment in our model has i ts  own heating source (a  gas 

heater) controlled by the tenant. The ie" tenant can instantaneously 

control the heat flow, u. (where u. 3 0 )  to maintain the tempera,ture 
1 1 

of his apartment, x a t  a comfortable level. The cost, per  unit time, i 
1 2  

of operating the heater i s  C.U. t 2p.u.  where the quadratic t e rm  
3 1 1 1 '  

represents the damage done to the furnace by operating it  at excessive 



levels. (Whatever the actual form of the limitation on the capacity 

of the furnace, the quadratic term may be considered an approxi- 

mate "penalty function" model of this limitation. ) 

The reference level of the temperature i s  chosen to be the 

desired temperature (say 7 0 O ~ ) .  To simplify the model somewhat, 

we assume that all tenants have the same preferred temperature. 

It i s  then reasonable to model the ith tenant's "discomfort costti  by 

a quadratic t e rm  in x.. Thus, the cost criterion in  our model is 
1 

Note that the various tenants' cost cr i ter ia  a r e  not coupled. 

The source of conflict in this model i s  heat flow through walls 

shared by adjoining apartments. We let the state variables in our 

model be the temperatures, assumed uniform in any apartment. 

Let xo(t) be the outdoor temperature (relative to the desired indoor 

temperature),  assumed to be sufficiently negative so that a l l  heaters 

will be operated a t  positive levels. (This assumption allows us to 

ignore the constraint u. 2 0. ) The temperatures of the N apartments 
1 

a r e  then governed by the following set  of N coupled linear differential 

equations : 

where 

t h 
V. = heat capacity (per degree) of the i apartment 
1 



ar. = heat conduction through exterior walls 
10 

cr. = cr.. = heat conduction through wall shared by 
lj JS 

apartments i and j. 

We may consider the heat capacity V. to be a measure of the size o f  
1 

the ith apartment. 

Finally, we must specify the information available to the tenants. 

We assume that each tenant has continuous knowledge of the tempera- 

tures of a l l  N apartments, so that controls can be used, * 

We then seek closed loop Nash solutions, and, for comparison, 

the set of noninferior solutions. Since there a r e  linear t e rms  in the 

cost functions and driving te rms  (involving x the outside tempera- o9 

ture, which i s  assumed known a s  a function of time) in the state 

equations, we use the Nash solutions for the more  general form o f  

the problem, which a r e  given in Appendix A. ** Letting 

*An interesting and more realistic alternate assumption is that 
each tenant can measure only his temperature. Questions 
would then a r i s e  concerning the of the other tem- 
peratures through measurements of the ith tempirature.  

**The reader may skip from this point to the paragraph following 
.ecyuation (4, 65). 



where e. i s  the ith unit base vector,  and using (A. 3)-(A. 7), the 
1 

closed loop Nash cost functions a r e  

and the closed loop Nash controls a r e  

where the NxN symmetric  ma t r ix  S the N-vector Ei, and the scalar 
i' 

u. a r e  solutions of 
1 

T Ei = -(A - 1 T 
-- S.B.B. lei - si, t S.B . B T ~  ./p 
P: J J J  ~ J J  J j 



The se t  of noninferior solutions to this problem can be obtained 

by solving a set  of scalar optimal control problems of the form:: 

Choose ul ,  . . . 
U~ 

to minimize 

subject to 

k = A x + B u t w  

where CJ. i s  the usual positive weighting vector and 

Q(p) = diagonal matrix whose diagonal elements a r e  plql ,  . . . 
pa\ 

R(p) = diagonal matrix whose diagonal elements a r e  plpl ,  . . . 
pD 

Sf(p) = diagonal matrix whose diagonal elements a r e  

Since any optimal control problem i s  a special. case of a differential 

game, the solution to (4. 361, (4. 37)  can also be obtained from QLppedix 44 

where 



The noninferior control for the ith tenant i s ,  f rom (4. 58) 
I 

4 A 

(where S. denotes the ith row of S). The costs  for  the individual 
1. 

tenants corresponding to these noninferior solutions can be computed 

by applying (A. 12)-(A. 15). After some manipulation, the cost for  the 

ith tenant is found to be 

where 

* t 4  A 

P. 1 = -A pi - P.A 1 - 41 + ( ~ . B . B ~ S ~  t ~ . B . B . $ . ) / ~ . ~  
J J J  1~ J J  ~j 

A T A A 

S.B .B. /P .~ . )$ .  + s ~ B ~ c ~ / ~ ~ ~ ~  - Piw 
J J J  J J 1  



The set  of formulas (4.32)-(4.45) will give the controls and costs 

for the closed loop Nash solutions and for  the set  of a l l  noninfesios 

solutions for any configuration of apartments. However, they a r e  

far  too cumbersome to have any intuitive appeal. We shall demon- 

s t ra te  their use by computing the solutions to a specific model involving 

two apartments of unequal size, with different heat conduction to the 

outside and different lfcomfort cr i ter ia t f  for the tenants. 

* 

'When there are two apartments, our model reduces to 

where cr = - rI2 - r21, and where the costs a r e  measured in  units such 

that the "fuel pr icesn c l  and c a r e  unity. W e  have omitted the terminal 2 



cost t e rms  because we intend to take t sufficiently large that the f 

terminal  costs would have a negligible effect on the solutions during 

most  of the interval of play. In other words, we shall seek 

state (but not necessarily constant) solutions. 
P 

The inhomogeneous t e rms  in  our state equation represent the 

outdoor temperature x (t) ,  measured with respect to the desired indoor 
0 

temperature. A reasonable choice for  the outdoor tempe rature might be 

( t )  = -y - z cos(2nt) 
0 

where x > z 0, and where time i s  in days, measured from the time 

of day when the temperature i s  lowest. A general program has been 

written to compute the closed loop Nash solutions and the noninferior 

solutions for  any set  of parameters ,  by integrating eqs. (4, 33)-(4. 35) 

and (4. 38)-(4.45). However, i t  has been observed that no interesting 

effects a r i se  from the presence of the periodic driving t e rm,  and the 

resul ts  a r e  much more  easily presented when the outdoor temperature 

i s  constant. 

Since there a r e  nine parameters  even when the outdoor ternpera- 

ture i s  constant, i t  would obviously be impractical to il lustrate the 

dependence of the solutions on each of the parameters .  Instead, we 

shall  present  solutions for two values of one of the parameters ,  the 

f i rs t  tenant Is "comfort parameter  ql , holding the remaining parameters  

a t  the following values: 

x = - 40° 
0 

r /vl = 0- / v 2 =  4 l o  2 0 

o/v, = 0-/v, = 10 

p1 = p i : = . l  

q2 = 3 



POP the completely symmetric case q1 = 3, the equicost con-- 

tours for the two tenants a r e  plotted in the control space in  F i g ,  4, ].. 

The dashed lines give the loci of rational solutions for the two players; 

their intersection i s  the Nash solution. The dotted curve gives part 

of the set  of noninferior solutions (it extends to the centers of the sets  

of elliptical cost contours, which lie a t  (-10, 398) and (398, -10) for 

Players  1 and 2 ,  respectively). At various points on this curve, the 

weighting p on Player 1 i s  indicated. Note that, a s  usual, something 

must be sacrificed to obtain the security of the Nash solution. The 

shaded region indicates those solutions which dominate the Nash solu- 

tion. They correspond to weightings .4589 € p < . 541 1 .  In ~ a r t i c u l a r ,  

if each player plays the cooperative solution corresponding to equal 

weighting, each player's cost i s  7% less  than his Nash cost. 
-- - 

0' 100 200 U L  

F i g .  4 .1 .  Cost contours for  the symmetric apartment heating problem 



If we now lower ql from 3 to 1, we should expect P layer  1 to 

use less  heat, since he is now willing to tolerate a lower temperature.  

P layer  2 will then lose m o r e  heat through the dividing wall, and he 

will partially compensate this by operating his  heater  a t  a higher 

level. The resulting situation i s  shown in Fig. 4 .2 .  Again, there  

I a r e  solutions (shaded region) which dominate lthe Nash solution, bud 

the noninferior solution with equal weights on the two players i s  not 

one of them. The noninferior solutions which dominate the Nash 

solution have weightings in the range .6391 < p < . 71 16. The non- 

inferior solution with weighting . 672 gives each player a cost which 

i s  6% below his Nash cost. 

Fig. 4. 2. Cost contours when f i rs t  tenant places a lower penalty 
on discomfort. 



It i s  also easy to find the r i sk  involved in playing a noninferior 

solution, a s  well a s  the advantage to be gained by "cheating. '' Suppose, 

for example, that Player  2 cheats while Player  l uses a noninferior 

corntrol. Since Player 2 will t r y  to optimize, the resulting solution 

wi l l  lie on the dashed line giving Player  2's rational solutions, a t  a 

point directly below the "nominal" noninferior point. The resulting 

costs  (which can be computed by interpolation) can then be compared 

with the Nash costs. Note that i f ,  i n  Fig. 4.1,  a noninferior solution 

with equal weighting i s  agreed upon, and then both players cheat (each 

believing the other will not cheat) the resul t  i s  worse for both players 

than the Nash solution. 



CHAPTER V 

COMPUTATION O F  NASH EQUILBRYL 

5. 1 Introduction 

This chapter considers the problem of computing Nash equili- 

brium solutions, both open loop and closed loop, for general nonlinear 

differential games? In Chapter IV we saw that when the system i s  

linear, the cost c r i te r ia  a r e  a l l  quadratic functions of the control and 

state variables, and there a r e  no inequality constraints, then both 

kinds of Nash solutions can easily be obtained by integrating ordinary 

differential equations. Unfortunately, a s  can be seen from the 

examples given in  Chapter VIII, most  of the interesting applications 

of differential games cannot even be approximately modeled by the 

LQDG. Before differential games can be used to analyse realistic 

situations of "imperfect competition," numerical methods a r e  needed 

for  computing various kinds of solutions fo r  a more  general c lass  of 

problems. 

In Chapter 111 we have seen that the se t  of noninferior solutions, 

o r  a t  least  part  of it, can be obtained by solving a family of optimal 

control problems. The minimax solutions can be found by solving 1'9 

two-person zero-  sum differential games. Solving a deterministic two- 

person zero-sum differential game i s  very similar  to solving an optimal 

control problem. Of the solutions we have considered in the previous 

chapters,  only the Nash solution cannot be obtained by solving one o r  

*The only '%esult" in  this chapter i s  contained in Section 5 .4 .  The general 
procedures described briefly in Sections 5 . 2  and 5. 3 have not bee2 irnple- 
mented. They a r e  included because they a r e  conceptually useful a s  a 
background for considering more  efficient computational methods. 
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more optimal control problems. This i s  the reason for giving it 

special attention in this chapter. 

There a r e  many optimal control problems which a r e  too diffi* 

cult to be solved in a reasonable time by any known numerical methods, 

For  each of these problems, a differential game with a similar  mathe- 

matical structure could be constructed, but we would not expect much 

success in  analyzing such a game. Hence, we res t r ic t  our  attention to 

differential games where the optimal control problem with the same 

structure can be solved by some practical method. This means that 

we shall always be considering problems where the part of the nonin- 

ferior  set  which can be obtained by "scalarization, a s  well as the 

minimax solutions ( i f  they exist), can be found by available numerical 

techniques. 

In devising algorithms to solve optimal control problems, one 

need not distinguish between the open loop and closed loop cases, since 

(in deterministic problems) both assumptions lead to the same trajec-  

tories. But we have seen in Chapter I11 that in the nonzero-sum differen- 

t ial  game entirely different solutions follow from the two alternative 

assumptions. Thus, in designing a n  algorithm for computing open loop 

Nash solutions, one must be careful to avoid using "closed loop ideas. 

Each player's control must optimize his cost, considering the other 

playerst  controls a s  fixed functions of time only. Conversely, the 

computation of each player's closed loop Nash control must correctly 

take account of the state dependence of the other players controls, 



The reader should be warned that the results in this chapter 

a r e  discouraging. It appears that computational methods which have 

been successful in optimal control theory cannot readily be extended 

to find Nash solutions of differential games. The difficulties a r i se  

i s  neither minimized nor maximized with 

when the game i s  nonzero-sum. 

The next section describes a naive iterative method for computing 

either kind of Nash solution. If the procedure converges, the solutions 

have the desired Nash property, but there i s  no guarantee, and little 

reason to hope, that the method converges. 

Section 5. 3 describes the extension of the well-known dynamic 

programming idea. While i t  provides a conceptual method for  finding 

closed loop Nash solutions without iteration, the same difficultie s 

which make it  impractical for most optimal control problems arise - -  
plus one additional difficulty. 

Section 5.4 describes the extension of one of the most c;uccessful 

"second order I s  methods of optimal control theory, and shows that this 

approach -- surprisingly - -  fails in the nonzero-sum differential game. 

The definition of the Nash solution requires that each player !s  

control function shall be optimized against the other players1 control 

functions. This suggests the following simple iterative procedure : 

1, Start by guessing control functions for players 2, . . . , N, and 

set i = 1. 



Using an available optimal control algorithm, compute the 

t h optimal control for  the i player, using the most  recently 

computed control functions for the other players.  

If the most  recent computation for each player produced no 

change in  his control function, stop. Otherwise, replace i 

by i(mod N) -I- I ,  and re turn  to step 2 ,  

If this '!cyclingn procedure converges, the resulting solution will 

satisfy the definition of the Nash equilibrium. In principle, i t  could. 

be used for either open loop o r  closed loop controls, but i t  s eems  

ra ther  impract ical  to compute and s tore  a complete closed loop control 

f ~ ~ n c t i o n  at  each step in. the algorithm. Thus, the method appears  bet ter  

suited for computing open loop controls,  

The result  of one ltcycleff of this algorithm can be viewed a s  a 

(k) mapping from the set  of functions [u2 , . . . , uN (k)] to the se t  of functions 

[ u y l  +1) 'k'l)] (where k denotes the kth cycle). The algorithm will , . - * s u p g  

converge if this mapping is a contraction on the space of feasible s t r a -  

tegy N-tuples. 'She Nash equilibrium N-tuple i s  the fixed point of this 

contraction. However, there is generally no simple tes t  fo r  determining 

i f  the mapping i s  a contraction, since the function giving the mapping i s  

not available i n  explicit form.  (One evaluation of this function requires  

solving N optimal control problems. ) 

One expects that the cycling method will succeed on sorne problems 

and fail  on others.  In sorne differential games, the success of the pro- 

cedure may depend on the ordering of the players  in the cycle. Conver- 

gence, if i t  occurs,  may be slow, since near  the Nasb equilibrium each 



player 's cost i s  insensitive to  his own control but sensitive to the 

other players ' controls. 

This section describes briefly the extension of the well--known 

idea of dynamic programming to the problem of computing Nash solu- 

tions t o  differential games . 

Let "DG" denote the usual differential game, where player 

i (i = 1, . . . , N) chooses a closed loop control function ui(x, t )  to minimize 

subject to 

k = f ( x ) t t u l ( x , t )  ).. . ,  uN(x, t))  , x ( t o ) = x  o ( 5 . 2 )  

ui(x, t)  E Ui(x, t)  for  a l l  t F [to, tf] ( 5 .  3)  

where the terminal  t ime t i s  fixed. 
f 

Corresponding to DG, let  I1MG(K) denote the multistage game 

obtained by dividing the interval [to, tt] into K equal parts* and requiring 

that the players use  piecewise constant controls, with discontinuities 

k occurring only a t  t imes  - (t - to), k = 0, . . . (K - 1). In MG(K), player K f 9 

i chooses u.(x, k) to minimize 
1 

subject to 

*The reader  familiar with dynamic prograrnmirlg may skip to the middle 
.of page 5 - 7 .  



K 
x(k + 1) = x(k) + F (x(k), k, ul(x(k), k), . . . , uN(x(k), k) )  

K 
x(0) = a. , u. (x, k) c U. (x, k) (5. 5) 1 1 

where the functions LK and F~ a r e  obtained from Li and f in (5 .1)  and 

where y(t) i s  the solution of 

9 = f[y, t, ul  ( ~ ( k ) ,  k), . . , uN(x(k), k)I 

Fo r  any positive integer K, the idea of closed loop Nash controls for 

the multistage game MG(K) i s  well-defined. The value functions 

K 
Vi (x(k), k), i = 1, . . , , a r e  the remaining part  of the sum in (5 .4)  

starting at stage k, when a l l  players use  closed loop Nash controls,  

They satisfy the following difference equation: 

K K K 
V. 1 (x, k)  = min {li [x + F (x, k, uf (x, k), . . . , ui, . . . , u%(x, k)), 

u; 

K 
Vi (x, K )  = K, (x) (5- 9)  

& .b 



where u?(x, k), i = 1, . . . , N, i s  the control which achieves the minimum 
1 

in (5.9).  Since the N value functions a r e  given for a l l  x at  the terminal 

stage K, the N coupled nonlinear difference equations (5.9)  can be 

solved for a l l  x, for k = I ,  . . . , K, provided that the "static Nash point" 

of the function in the brackets in (5. 9)  can be found. 

To construct an algorithm based on (5.9), one requires that 

kS the function V. (x, k)  be represented approximately by some finite set  
1 

. of numbers. The usual procedure in dynamic programming i s  to com- 

K K 
pute Vi (x, k) only at  points on a grid in  x- space. In computing V. (x, k - 1) 

1 

on the same grid, one either only considers controls a t  stage k - 1 

K which lead to an exact grid point a t  stage k, or  one obtains V. (x, k) 
1 

at  nongrid points by linear interpolation. 

Even in optimal control problems (N = 1) it  i s  very difficult to 

obtain acceptable results by dynamic programming, especially i f  the 

dimension of x i s  greater than 2 .  The "curse of dirnensionality'?~ 

even worse in  the game MG(K), because (i) N value functions must be 

stored instead of one, and (ii) finding the Nash point of a vector function 

i s  more  complicated than finding the minimum of a scalar function. In 

fact, if one represents a scalar function by a set  of values given a t  

points of a finite grid, then no matter  how coarse the grid, this se t  

of values will always have a minimum. But i f  an N-dimensiona,l function 

of N control variables i s  represented by a finite set of values, it i s  

possible that this a r ray  will have no Nash point even when the function 

itself does have a Nash point. Too coarse an  approximation of the value 

functions may thus not only cause inaccuracy but may actually lead us  to 

the erroneous conclusion that no Nash solution exists for our problem, 



Even i f  a n  accurate solution to MG(K) could be obtained, i t  

may be hard to prove that the solution to MG(K) approaches the s o h -  

tion to 596 a s  K +  a. However, in  pract ical  applications, decisions 

a r e  not really made continuously, and a multistage model may be m o r e  

appropriate than a continuous differential game model. 

In this section, a n  attempt is made to construct a computationally 

efficient method for finding closed loop Nash controls by generalizin.g 

a method which has succeeded in  solving a wide c lass  of nonlinear optima 

control problems. Unfortunately, the conclusion of this section will be 

that this t p e  of approach cannot be used to compute Nash solutions of 

nonzeko-sum. differential games. Although this negative resul t  is dis-  

appointing, the reason fo r  the failure of the method gives some insight 

about the nature of general differential games, 

The dynamic programming approach described in the previous 

section i s  general enough to be applicable to  almost  any problem, but 

i t  i s  not pract ical  to use this method except for very low-dimensional 

problems because of the enormous amount of computation involved. 

There a r e  two features shared by many pract ical  optimal control problems 

(as well a s  by most  differential game models) which the dynamic prograrn- 

ming method fails to exploit: 

(i) The functions appearing in the system equations and the cost  

c r i te r ia  a r e  continuous and differentiable in  a11 their  arguments.  



(ii) One does not need a solution for al l  points in the state-time 

space, but only along a trajectory through a specified initial 

point. (Plus, possibly, linear llcorrection" t e rms  valid in a 

neighborhood of this trajectory. ) 

In optimal control theory, efficient iterative methods have been developed 

which exploit these two features by expanding the optimal cost surfaces 

around a nominal trajectory through the given initial point. A linear 

correction to the control i s  then computed to minimize the dominant 

t e rms  in this expansion, and a new nominal trajectory through the same 

initial point i s  computed. An algorithm of this type i s  called "second 

order"  i f  a l l  the second order terms a r e  included in  the expansion of 

the function which i s  minimized by the control corrections. 

One of the most successful of the second order techniwes of 

optimal control theory i s  the "differential dynamic programming '"(DJJIP) 

method of Jacobson and Mayne. ( 14' ) The D D P  approach is  

especially appropriate for our purpose because i t  is based on an expan- 

sion of the Hamilton-Jacobi equation and i s  thus a purely "closed loop'" 

method. We have already seen in Chapter 111 that in  nonzero-stam 

differential games (unlike optimal control problems) one cannot %se 

closed loop and open loop arguments interchangeably. 

The DDP method (and i t s  extension to differential games) i s  

most easily described if we res t r ic t  our attention to nonsingular p r ~ b l e m s  

(defined below) with no inequality constraints. Jacobson also extended 

the method to cover optimal control problems with control variable 

inequality constraints(14), and, more  recently, extended i t  to singular 

problems(18), '%ang-bangq1 and problems with inequality 



constraints involving the state variables(20).  These extensions would 

be important in analyzing differential games, but we need not consider 

them here ,  The simple unconstrained, nonsingular case i s  enough to 

demonstrate the idea of the method a s  well a s  the reason for i t s  future. 

We a r e  seeking an  iterative procedure for finding the closed 

loop Nash controls to the differential game "DGn described by (5 ,  1) 

and ( 5 . 2 ) ,  with no constraints of the form (5. 3) .  We a r e  mainly in ter -  

ested in the Nash trajectory pas sing through the initial point (xU9 to)  > 

although if possible we would a lso  like to compute the local expansion 

of the closed loop Nash controls about this t rajectory.  

Let the exact closed loop Nash value function for the ith player 

be denoted ve(x, t )*  (We use the superscript  to distinguish the exact 
1 

function from approximate functions based on expansions. ) Let the 

e closed loop Nash controls be a. (x, t ) ,  i = 1, . . . , N. Then the value func- 
3 

tions must  satisfy the generalized Hamilton-Jacobi-Bellman equation: 

for i = 1 9 . .  . ? I T  

where %I?:(*, t )  is the ui which achieves the global minimum. Define 

the vector Harniltonian H as the N-vector whose ith component i s  the 

function 



e Letting V: = [Vlx,. . . , vkx], we write H a s  the vector function 

H(x, t, u19 . . . ve), and the operation in (5.10) then i s  to find the 
9 U ~ 9  x 

(static) Nash point of H. 

In order to concentrate on the simplest case, we now make the 

following two assumptions: given any arbitrary x, t, and v:, 

(i) If (u;, . . . u:) i s  a Nash point of H(x, t, ul ,  . . . , uN, v:), then 

H. (x9 t9 ul , . lu.u. ve ) i s  positive definite for i = 1 , .  . . , N. 
1 1  

' U ~ '  IX 

This i s  the condition. 

(ii) There i s  not more than one Nash point of H. 

Note that (since the minimization in (5. 10) i s  global) condition (ii) would 

be implied by condition (i) in  an optimal control problem. But a nonzero- 

sum game can have two distinct Nash points, with different costs, even 

though a l l  the minimizations a r e  global, 

Now let Vx(x, t )  = {vlx(x9 t),  . . . , V (x, t)} be any N-tuple of 
Nx 

n-dimensional vector functions (our algorithm wil l  furnish an approxima- 

tion to v:, but a t  this point Vx i s  considered arbitrary).  Let 

u* (x, t ,  Vx) = [U';(X, t, VX), . . . , u&(x, t ,  VX)] (5,12) 

be the N-tuple of control vectors which gives the Nash point of 

H(x, t,u19 . . , uN9 Vx) whereever the Nash point exists. (By assumption 

(ii), the Nash point i s  unique i f  i t  exists. ) Since there a r e  no control. 

inequality constraints, 



aHi q (x, t, uT, . . . , u&, Vix) = 0 for i = 1, . . . , N and fo r  all  x, t 

(5. 1 3 )  

I 
Let xjtj be any arbi t rary  given "nominal t r a j e ~ t o r y . ' ~  We  now 

expand the unknown Nash cost functions ve(x, t )  around this nominal 
1 

path: 

1 T e  v:(Z + bx, t )  = v:(:, t )  + vYx(Z, t)6x i- -i.6x vixx('Z, t)6x + . . . 

It i s  also convenient (although not necessary)  a t  this point to define 

ae(x, t )  a s  the difference between the true Nash cost for  the ith player 
1. 

and the Ifnominal cost, 'I starting from (x, t )  : 

Henceforth, Hi, f, and a l l  their part ial  derivatives in  the expansions 

to follow will be evaluated a t  x(t),  t,  u':(t), . . . , u&(t), Vx(x9 t )  unless other 

arguments a r e  given explicitly, 

Using, approximations ai, Vix9 and Vixx (to be furnished along 

the nominal path by the algorithm) for ae(G(t), t ) ,  V? (x(t),  t ) ,  and 
1 1x 

e 
vixx 

(G(t), t), respectively, and substituting (5. 13) into (5. 1 0) gives : 

- 
+.Later, we shall denote by GI ,  . . . , uN the se t  of controls which generates 

this "nominal path. 



T 6x t h where 6x Vixxx denotes the row vector whose j component i s  

a3vi 
dxk6Xm 

j k m )  etc. 

k rn 
ax ax ax 

Note that, to retain all second order terms in  the expansion, we must 
I 

expand V. to third order. 
1 

W e  now expand the right side of (5.15) around x, t, uy, . . . , u* V N' ix 

to second order: 

+ higher order terms] (5. 16) 

where, to simplify the algebra somewhat, we have made the assumption 

that 

H = O  for j f k  
iujuk 

av ixx j i s  the n x n matrix Note again our notation: Vixxx 6 .  
8xj 

We now assume an approximate relation between 6u. and 6x of 
1 

the form 

where p. is a mi x n matrix and r. i s  a m. x n x n tensor whose meaning 
1 1 1 

should by now be clear. 



Differentiating (5, 16) by 6u. to obtain the minimum, the f i r s t  
1 

order  t e rms  a r e  

so  we must have 

- 1 pi = -El. + f T v  ) lu.u.(Hiu.x u. ixx ( 5 .  20) 
1 1 1 1 

If one c a r r i e s  out the expansion (5.16) through a l l  third o rde r  

t e rms ,  then differentiates and substitutes for 6ui using (5. 18) and (5. 20), 

one finds by collecting all the second o rde r  t e r m s  that 

Using these resul ts  for pi and ri, and collecting like-order 

t e r m s  in 6x in  (5.15), one obtains, for i = 1, . . . , N, 

+ fTv.  + V. f + vf + 

x lxx 1xx ixxx 

Now since yii, ai, Vix, and Vim a r e  functions of x and t ,  their  total 

t ime derivatives along the nominal t rajectory a r e  

d - -  - - - - 
z ( V i  -f- a.) = Vi t  + a. + V. f ( x , t , u l , .  , uN)  f - -  xi; 1X 



Taking the symmetric part of (5. 24) (since Vixx must be symmetric), 

d -- eqs. (5.22)-(5. 27) give (using Li = -z Vi) 

T T -  - - -V. = Hix 4- (f - f (x, t, ul , . . . , uN))ViXx 
1 X 

- - 1 + r T v  ) Hiu Hju.u (Hju.x u jxx 
j ~j J j 

v =Hixx ixx 
t V f f fTv. 

ixx x x ixx 

t symmetric part of r Hiu j 
j 



V ixx (xf7 tf)  = Kixx(xf) (5. 3 0  

where P. i s  given by (5.21). 
1 

Note that the next-to-last term in (5. 301, v~hich contains V 
ixxx9 

would vanish i f  the nominal trajectory were the actual Nash trajectory, 
- - 

since then (ul , . . . u ) would equal (u?, . . . , u' ). Thus ignoring this ' N  N 

t e rm would not invalidate the result, a s  long a s  the algorithm con- 

verges. Unfortunately, Vixxv also contributes to ri (see (5.21)) 

which appears in the last term in (5. 30), and in this case the contri- 

bution of Viux does __nol; vanish even i f  the nominal trajectory i s  the 

Nashtrajectory.  I g n o r i n g t h e l a s t t e r r n ( o r t h e p a r t o f i t i n v o 1 v i n g V  ) 
ixxx 

would thus completely invalidate (5. 30). Since the V for al l  j f i 
j= 

do not vanish from (5.29) on the Nash trajectory, (5. 29) will not yield 

the correct  Vix, and the controls u?, . . . , u* computed via (5. 14) will 

not minimize the correct  Nash Hamiltonian. 

This difficulty could be eliminated i f  we had some way to compute 

V for  a l l  i, by some approximation which became exact on the true ixxx 

Nashpath. I f V  were available, then the process described above 
ixxx 

could be repeated, using a s  the new nominal trajectory the path obtained 

by integrating the state equation from (x t ), using the controls o9 o 

- 
where 6x = x 1  - x i s  found by integrating from (x 

09 to) 

It i s  straightforward to verify that, if this iterative procedure converges 



(still assuming the correct  Vixxx i s  somehow included in (5. 30)) ,  

then the solution will be the closed loop Nash solution satisfying 

Unfortunately, to obtain an equation for V. one must expand 
lXXX 

(5.15) to include a l l  third order terms.  The resulting differential 

equation for  Vixxx will then contain nonnegligible t e rms  involving 

vixxxx' and so forth. Unless the problem has the special property 

that the kth partial derivative of V;(X, t )  vanishes, for a l l  x, t ,  and i, 

for some finite k, the method will fail  to produce the correct  t r a ~ e c -  

tory no matter  how high the order of our expansions. Thus the DDP 

method apparently cannot be extended to find Nash closed loop solutions, 

and clearly the same difficulty would occur with any other iterative 

method based on ttlocallt expansions of the Hamilton-Jacobi equation 

or of the variational necessary conditions. This i s  a remarkable 

property of the nonzero-sum differential game, and i s  a consequence 

8Hi 
of the fact that, for i # j, - f 0 at  the Nash point. 

au 
j 

There a r e  several special cases where the difficulty described 

above does not occur, so that the algorithm succeeds: 

(1) The (N = 1 ). The summation in the 

last t e rm in  (5.30) has N - 1 te rms  and thus i s  absent. The 

method then reduces exactly to Jacobson's DDP. 

The . Here it  is easy 

to show that HI = -HZ, S Q  that, since W = 0, we also have 
l u l  

= 0 ,  Thus the last term in (5. 30) vanishes, and the 



e algorithm succeeds. In fact, since V; = -V2, eqs. (5.28)-(5.  30) 

can be simplified considerably, so that they very closely re  - 
semble the corresponding equations for the DBP method. 

(3) The (see Section 4. 3b), This i s  a 

case where Vixxx i s  identically zero, and (5. 30) then reduces 

to (4.17). While this i s  reassuring, it  i s  of little help since 

we already know how to solve the linear-quadratic differential 

game. 

(4) The , where al l  players have the same cost 

criteria.  Since H1 = . . . = HN, H. = 0 implies Hiu = O for all 1u. 
1 j 

j, and the last term in (5.30) vanishes. This problem can be 

reduced to an  optimal control problem and solved via DBP. 

(5) The differential game which can be into N subproblems 

which a r e  not coupled in the state equations nor in the cost 

criteria.  This i s  not really a game but only N separate optimal 

control problems. 

(6) The , where the players can be 

numbered so that the ith player i s  concerned with the controls 

used by players 1 through (i - 1) but not with the controls of 

players (i + 1) through N. This can be solved as an ordered 

sequence of optimal control problems. 

It i s  important to note that simply using the algorithm described 

above, omitting the terms involving the unavailable Vjxxx, will not in 

any acceptable sense produce an "approximate" Nasb solntion for the 

general nonEnear case. 



It also appears that "bootstrap procedures for generating an 

approximation either to V. o r  to r. based on computing several  
1xxx 1' 

neighboring trajectories and numerically differentiating, a r e  doomed 

to failure. Careful examination of such proposals reveals that they 

a r e  based on using the same V. on the set  of neighboring paths, 
1XX 

which is  equivalent to assuming V. = 0. >k 
1XXx 

Thus the prospects for developing an efficient computational 

algorithm for Nash solutions appear rather poor. In the next chapter, 

some special cases (not quite so special a s  the six listed above) a re  

presented for which approximate Nash solutions can be obtained, using 

ideas introduced in this section. 

$This fault was pointed out by D. Jacobson (private c~anm~zl icat ion) ,  



CNlAPTER VI 

APPROXIMATE NASH SOLUTIONS FOR SOME: S P E C a L  GASES 

6. 1 Introduction 

In the previous chapter, we concluded that there apparently 

was no computationally efficient method for computing closed loop 

Nash equilibrium trajectories through a given initial point for a general 

nonzero-sum differential game. However, a t  the end of Section 5.4, 

six special degenerate cases  were given in which the closed loop Nash 

solutions could be computed efficiently by known methods such a s  

Jacobson's differential dynamic programming (DDP) '~  4'. The fir s t  

case, the optimal control problem, does not interest us, since we 

a r e  concerned with games with two or  more players. The remaining 

five special cases were: 

(i) The , where the cost 

cri teria J1 and J 2  have the property that there exists some 

strictly monotone transformation g such that g(S ) = -S f a r  2 1 

a l l  feasible strategy pairs.  

(ii) The (the f'perfectly cooperative * 
case) where (after appropriate monotonically increasing trans - 
formations) the cost cr i ter ia  of the N players a r e  identical. 

(iii) The , which can be decomposed 

into N separate and unrelated optimal control problems. 

(iv) The where the players can be 

ordered so that each player i s  influenced by the players ahead 



of him in the ordering, but not by the players behind him, 

(This includes (iv) a s  a special case. ) This can be solved a s  

a sequence of control problems, using the controls for  the 

th f irst  (i - i j players a s  inputs to the i player's system. 

(v) The which i s  easily solved 

without iteration by the results of Section 4. 3b. 

The purpose of this chapter i s  to consider differential game 

models where the formulation involves a l tsmalln parameter E, such 

that, i f  E = 0, the model reduces to one of the five special cases  listed 

above. The "nominal" solution (for E = 0) will be assumed to have 

been found for some fixed initial point. Certain other quantities, such 

a s  various partial derivatives of the Nash cost functions and of the 

Hamiltonians will be assumed known along the nominal path. (These 

would be provided a s  byproducts of a DBP computation of the nominal 

path. ) W e  shall then develop the closed loop Hash solution a s  Taylor 

ser ies  expansions in  E, and an algorithm will be derived Mihieh will corn- 

pute exactly the f i rs t  order t e rms  in these expansions. By dropping 

the higher order t e rms  (which a r e  not provided by the algorithxn) we 

will then obtain an approximate solution with an e r r o r  proportional to 

2 
E . The actual range for which this approximation i s  acceptable will 

depend on the details of the example under consideration. However, 

as a general indication of the magnitude of the e r ro r ,  the second order 

term in the expansion of the cost functions can be obtained, without too 

much additional computation, at  the initial time. 

Since the basic idea of this type of approximation i s  the sarne 

for garnes which "almost '' satisfy any of the five conditions listed above, 



a detailed derivation of the method will only be given for the 'galmost 

zero-sumtt differential game. For  the other four cases,  only the 

problem statements and the results will be given. 

It will be assumed in  the following sections that there a r e  no 

inequality constraints of any kind, and that a l l  the part ial  derivatives 

required in the method exist. The idea can probably be extended to 

problems with certain simple types of inequality constraints (such a s  

control constraints) but considerable complexity would be added, since 

the expansion in  e would not be valid a t  llentrytl o r  "exit" points ( t imes 

a t  which the number of active constraints changes). 

If J1 and J2  a r e  the cost functions for a 2-player differential 

game, then they can always be written in  the form 

i. e . ,  

If nearly a l l  the costs come from the J- t e rm,  we shall say the game 

i s  llalrnost zero-sum.I1 We may then consider J' and J-  to be of the 

same order  of magnitude, so that the constant parameter  E is fismalL,f8 

We then seek an approximate method for finding the closed 100p 

Nash solutions to the problem:* 

*It i s  not actually necessary that the coefficients of E in J1 and J2 be 
+ + 

the same (we could have L1 and L2) but we forgo this slightly more 

general formulation in  favor of l e s s  cumber some notation. 



Choose u (x, t )  to minimize a 

+ E K + ( x ~ )  

and choose u2(x, t )  to rninimize 

J2 = t 
[-L-(x, t p  ul  9 u2) + eL (x, t, ul u2)]dt - ~ ' ( ~ f )  

+ e.Kt(xf) (6. 3 )  

both subject to 

k = f ( x , t , u 1 , u 2 )  , x ( t o ) = x o  6 4 )  

Let q ( x 9  t, E) and $(x, t, E) denote the exact Nash closed loop control 

fields, and let Vl (x, t, E) and V2(x, t, E) denote the corresponding '!Nas@ 

remaining cost"  functions. Since the problem reduces to a zero-sum . 

game when tr; = 0 ,  i t  follows that I 
V1(x9 t, 0) = -%(x, t ,  0 )  = V(x, t)  ( 6 -  5) 

Suppose the nominal problem (E = 0) had been solved for a l l  x, t .  Then 

we could find an  approximate solution for smal l  E; by expanding the 

generalized B ellxnan equations I 



(where q ( x ,  t, 2) and @$(x9 t ,  E) a r e  the controls ul and u2 which achieve 

the required minima) in a ser ies  in  E around the nominal field, treating 

both x and t a s  independent variables. The practical difficulty with 

this conceptually clear approach is that the nominal solution would 

ordinarily be available only along a single nominal trajectory (the one 

through x t ) and not in the entire x, t-space. 
0' 0 

To avoid having to f i l l  the entire x, t-space with nominal tra- 

jectories, we proceed by expanding all  functions around the nominal 

trajectory ;(t) through the given initial point x 
0, 

a s  follows: 



where a l l  functions, unless otherwise specified, are evaluated on the 

nominal trajectory. The f i r s t  order  t e r m s  in the expansion of (6. 6) 

a r e  then 

t V 6 =rnin[-L; - L- vi - L; v2 t L t 
-V2et ttx 

v, 1 2 

(6. 12) 

Let  us  define, a s  usual, the Hamiltonian on the nominal t rajectory:  

- 
H(x9 t, U1 9 UZ9 x ) = (x, t, u l  u2) -r- V x f ( x 9  t 9  ul 9 u2) (6. 13) 

Then on this nominal path, 

- A V  = -vtx 
dt x 

- f T v  xx = H  x = L ; + V f  x x (6. 15) 

so  (6.12) reduces to 

- t -vIEt v1 EXf = L 9 v1 EGa t f )  = K'G~) 

C 
- V ~ r x  f = L  (6.16) 

a 
These equations have identical solutions. Defining Vlc = VZE = VE, 

-- t V = L VE(Gf' t f )  = K'(&~) (6 ,17)  
dt e? 

where the total derivative i s  taken along the nominal path. 



It is convenient at  this point to obtain a differential equation 

for vEX(x(t), t) .  It i s  easy to verify that 

where, from the nominal solution*, 

Since vl and v2 do not appear in (6.16), the minimizations 

required in (6.6) must be performed on the second order t e rms  in  the 

expansion. Collecting these terms,  using the fact that, f rom the 

nominal solution, 

-9 = - V  - V  f = H  + V  f +fjfvxX 
XX xxt xxx XX XX X 

and performing the required minimization yields 

*For the nominal solutions to exist, we must have H > 0 and 
H < 0. ul"l 

u2u2. 



or, alternatively, using ( 6 .  19) and the definitions in ( 6 .  l o ) ,  

Using (6.21) to substitute for vl and v in  the second order t e rms  of 2 

the expansion of ( 6 . 6 ) ,  and using ( 6 .  18) and (6.20) to eliminate many 

terms,  the following equations a r e  finally obtained for Vlee and VZra: 

Finally, an  equation i s  needed for S .  This i s  obtained by expanding 

the state equation (6 .4)  and collecting the linear t e rms  in E: 



where (6. 21) was used to eliminate v and v2. By integrating ( 6 .  17)  1 

and (6.18) backward from the terminal time tp VE and V a r e  ob- 
ex 

tained along the nominal trajectory. The first order correction to the 

trajectory can then be computed by integrating (6.23) forward from to. 

By integrating (6.22) backwards from tp one can obtain V and V 
1 EE 2 ~e 

at  the initial time t and these can then be used in the expansions of o 

the cost functions (6. 7) ,  (6.8) to get the second order corrections to 

the Nash costs a t  time to. Note that these second order corrections 

can only be obtained at to, since a t  other times Q(t), the second order 

correction to the trajectory which appears in (6 .  7) ,  (6.8), i s  not ze ro  

and i s  not provided by our method. However, knowing the second order 

terms in the costs at t might be useful in determining the range of F: 
0 

over which the approximation i s  acceptable. 

The procedure just described, although messy in  appearance, 

i s  computationally simple. No iteration i s  involved, once the nominal 

solution has been found. However, there i s  no way to irnprove the 

accuracy of the approximation except by going to higher order expansions. 

In an "identical goal" game, al l  the players t ry  to minimize the 

same cost criterion. In this special case, the Nash solution (which i s  

also the noninferior solution) i s  just the optimal solution any single 

player would achieve i f  he could choose all  the controls. If, in a general 

differential game, the cost cri teria involve a parameter E such that, 

i f  E = 0, the game reduces to an identical goal game, then the Nash 

closed loop solutions for sufficiently small  values of E may be obtained 

approximately by expanding the solution in  E around the "nominal'" 



( e  = 0 )  trajectory. One might qualitatively describe such a game as 

one in  which conflict plays a relatively minor role, compared to common 

interest. 

Since the idea behind this approximate solution i s  the same used 

in  the previous section for the "almost zero-sum game, only the 

problem statement, the form of the expansions, and the resulting 

approximate solutions will be presented. 

th 
The problem i s  for  the i player (i = 1, . . . , N) to choose ui to  

minimize 

subject to 

For i = 1 , .  N, let Qi(x, t ? ~ )  be the field of Nash closed loop equili- 

brium controls, and let V.(x, t, E) be the corresponding (exact) value 
1 

functions. Let x(t)  be the exact nominal trajectory ( E  = 0 )  through 

the initial point xo, t Let the trajectory, controls, and cost functions 
0' 

be expanded in e along the nominal trajectory a s  follows: 



By expanding the value function equation a s  in the previous section, 

the following exact equations a r e  obtained:* 

v. 1 = -H-' [(fT v + H )c  f L:. + fU.VTe,] U.U. u. XX u. X 
1 1  1. 1 1 1 

N 

k = ( f  + f 9. ) $  - T T 
X U.  J X  

f T ~ - l  u u.u (LT + f  V ) 
J j ~j 

juj u jex 
j=l  j= 1 j 

where, f rom the nominal solution, 

and where a l l  functions, including the various part ial  derivatives of the 

nominal Harniltonian H, a r e  evaluated on the nominal path. By inte- 

grating 

*These quantities may be interpreted a s  the sensitivities of the Nasb 
controls,  costs,  cost gradients, and trajectory to the parameter  E, 



and using the result  i n  the expansion ( 6 . 2 7 ) ,  the second o rde r  t e r m s  

in the cost functions can be found a t  the initial time. (They cannot 

be found for t > to because 8, the second order  t e r m  in the expansion 

(6.26) of the trajectory, appears  in (6. 27).  Nevertheless, i t  may be 

worthwhile to evaluate V (t ) via (6. 34) in  o rde r  to get a n  indication 
~ E E  0 

of the range of e over which the "almost identical goalf%approxirnation 

is valid. 

Jn this section we consider a se t  of N systems operated by 

separate controllers with different, unrelated objectives. If the systems 

operate completely independently of each other, the optirnal controls 

for the se t  of systems can be found by solving N separate ,  unrelated 

optimal control problems. But suppose the systems interact (due to 

coupling between the N differential equations describing them).  Then 

each controller must  consider the actions of the other (N - 1) con- 

t ro l le rs ,  and the situation has the s t ruc ture  of a differential game. 

We shall  say that the N systems a r e  if there i s  

some sca lar  parameter  e such that, when the state equations a r e  

written in the form (for i = 1, . . . , N) 

then e i s  smal l  enough so that it is reasonable to  expand all solutions 

in Taylor se r i e s  in  E. Here x. is a n  n.-dimensional vector which in the 
1 1 

absence of coupling would be the state vector for the ith system. 



The ith player wishes to choose u. to minimize 
1 

Lacking a means for reaching ftcooperativefl solutions, i t  i s  reasonable 

to assume that each player wants his strategy to be optimal against 

whatever strategies the other players a r e  using. If each player also 

realizes that al l  the other players a r e  thinking this way, the result 

will be the Nash equilibrium solution. Assuming each player has con- 

tinuous knowledge of x.  for a l l  j, we seek a f irst  order (in E) approxi- 
J 

mation to the closed loop Nash solution, following the same procedure 

used in the previous two sections. 

When E = 0, the problem splits into N separate control problems 

which can presumably be solved by DDP o r  some other appropriate 

algorithm. The solution to these problems starting from x to (the o9 

nominal solution) will be assumed known. Denoting the exact Nash 

controls and corresponding cost function for the ith player by 

\Yi(xI, . . . , xN3 t, E) and Vi(xl, . . . xN, t, E) respectively, we use the 

following expansions around the nominal path: 

1 2  
x. (t, E) = ;. (t) + EE. + z E Bi + . . . 
1 1 1 



- 
%.(Xl'.  . . ,%'t, f )  = 9.(x. t )  4- FVi + . . . 

1 1' 
( 6 -  3 9 )  

By expanding the value function equations and following the 

procedure used in Section 6 .2 ,  the following exact equations can be 

obtained: for i = 1, . . . , N I 

-v T 
i EX 

= V (f .  + f .  a. ) + gi Vixex 'exj J X ~  J U ~  J X ~  + Vix.(gix giuj *- jxj 1 
j 1 j I j 

where, from the nominal solutions, 

A11 functions a r e ,  of course, evaluated on the nominal path. By 1 
integrating 

vT ) 
JU .  J E X  

J 



the exact second order t e rm in the expansion (6.38) of the costs can 

be obtained a t  the initial time (not at  later  times because 8. i s  unknown), 
1 

Thus, once the set  of N unrelated nominal problems has been 

solved, by some control algorithm such a s  DDP, then the f i r s t  order 

corrections to the closed loop Nask solution when E # 0 can be found 

by integrating the linear differential equation (6.42) backward from the 

terminal time, then integrating the linear "state sensitivity equationfB 

(6.43) forward from the initial time. 

It may be objected that, although we have found an  approximation 

for the closed loop Nash solution, the results a r e  not given in closed 

loop form. However, for small perturbations from the f i rs t  order 

approximation to the Nash trajectory, corrections can be made by using 

the nominal linear feedback law (6.44). A. more  accurate feedback law 

could be obtained by further expansions, but this seems rather pointless 

since our solution i s  in any case only an  approximation (with e r r o r  pro- 

2 
portional to E ). 

In the "ordered" differential game, the players can be n ~ m b e r e d  

in such a way that the ith player need not be concerned with the actions 

of the last  (N - i) players in the order, but only with the actions of the 

f irst  (i - 1) players. This i s  not really a game, but only an ordered 

sequence of optimal control problems. The controls of the f i rs t  (i - 1) 

th 
players can be considered known inputs to the i playeris system, and 

the ith control obtained by solving a usual optimal control problem in- 

dependent of the actions of players i t 1, . . . , N. 



Even more  generally, there might be some part ial  ordering of 

the players forming a heirarchy (see Fig. 6. 1). Each player need only 

be concerned with the actions of the players above him in  the heirarchy. 

Pig. 6.1.  A partially ordered Fig. 6. 2. An "almost partially 

1 O-playe r game. ordered 'U 0-player gal 

Dashed lines indicate 

weak coupling. 

Fo r  example, in  Fig. 6. 1, Player  5 need only consider the actions of 

Players  1 and 2. Again such a game can be solved by solving a hei r -  

archy of optimal control problems. 

In this section we wish to consider differential games where 

there  exists strong unidirectional coupling a s  in Fig. 6. 1, plus s'weaktt 

two-way coupling, so that a l l  players must  take account of the actions 

of a l l  the other players. Such a situation i s  indicated in Fig. 6 ,  2. The 

assumption that the ffupwardll coupling i s  weak makes i t  possible to ob- 

tain approximate Nash closed loop solutions by using the same approach 

used in  the previous three sections. In fact, the weakly coupled game 

of Section 6 .4  i s  a special case  of the game considered in  this section. 



Because the approximation method proposed here i s  based on 

exactly the same idea used in  the previous sections, only the statement 

of the problem will be given. It i s  straightforward (but tedious) to 

derive equations for V 
ie5 'iEx;> and Vieey and thus to obtain the f i r s t  

J 

order terms in the power ser ies  expansion in E of the closed loop Nash 

controls and costs. 

To avoid excessively cumbersome notation, we state the problem 

only for a total ordering of the players (rather than the more  general 

partial ordering illustrated in Fig. 6.2). The extension to the more  

general case i s  straightforward. 

th The problem i s  then for the i player (i = 1, . . . , N) to choose a 

closed loop control function u. (x, t )  to minimize 
1 

where 

x.(t ) = x. 
1 0  10 

(6,197) 

When E = 0, the resulting flnominallt game can be solved a s  a sequence 

of optimal control problems, a l l  of which a r e  assumed to be solvable 

by some known algorithm such a s  DDP. An approximate closed loop 

Nash trajectory i s  then obtained by expanding in  c around this n~minab  

path, using the same procedure followed in Section 6. 2. 



.As the last in  our collection of special cliffere~tial games for 

which approximate closed loop Nash solutions can be obtained easily, 

we consider the case  where the game i s  almost linear-quadratic. 

The problem i s  for the ith player (i = 1, .  . . , N) to choose control 

function u. (x, t )  to minimize 
1 

where 

When r = 0, this problem reduces to the special form. of the linear- 

quadratic differential game considered in  Chapter IV. The most general 

linear-quadratic differential game, for which Nash solutions a r e  pre-  

sented in Appendix A, could also be extended to the ffalmost linear- 

quadratic " model. 

If we follow the procedure used in  the previous sections, we can 

obtain the f i rs t  order t e rms  in  r of the power se r ies  expansions of the 

closed loop Nash controls and costs.  We would then find that these 

f i rs t  order corrections depended on L. and f only through f ,  L f f 
1 i' x9 u ' i 

L. and LiU evaluated on the nominal path. It would be a simple matter 
1X 

j 
to compute the first order approximate solutions this way. However, 



2 
there would be an  e r r o r  (of order  E ) even i f  L. were a quadratic 

1 

function and f were a linear function. This i s  somewhat disturbing, 

since we know that we could obtain the exact solution to this problem 

a s  easily a s  we can obtain the nominal solution! 

If we only want a solution fo r  a particular value of e, we can 

obtain a more  accurate approximation by the following iterative pro- 

cedure: 

(i) Compute the nominal solution with E = 0. 

(ii) Expand L. and f in  power ser ies  in x and u l ,  . . . , uN around the 
1 

nominal path. 

(iii) Redefine the linear and quadratic t e rms  i n  the nominal problem 

to include the corresponding t e rms  in the expansions of Li and 

f. (For  example, replace Qi by Qi + eLixx, with Lixx evaluated 

x f r o r n ~ ~ . )  on the nominal path, and subtract z x  Lixx 

(iv) With these new parameters ,  again set  (; = 0 and compute a new 

nominal path. Return to step (ii). 

(v) When this process has converged, the problem will have been 

recast  in a form such that, along the nominal path, 

0 = Lixx = L. = L - - = f  = f  = K  - 

lujuk 
ixu - Liu - Lix x ui ixx 

j 
- Kix 

j 

If we then expand the Bellman equation for this recas t  version of the 

problem in a Taylor se r i es  in  E (pretending that Qi, Rij, etc. a r e  not 

dependent on E), we will see  that the second o rder  t e rms  a r e  already 

minimized by the nominal controls. Thus we have an  approximate set: 



2 
of Nash controls, with e r r o r  of order E . (Higher accuracy could be 

obtained by expanding the Bellman equation to higher order  i n  E, 

although this i s  somewhat cumbersome. ) In any case, the iterative 

procedure described above (which resembles the extended D D P  al- 

gorithm described in Section 5. 3)  produces a correction to the control 

2 
with e r r o r  proportional to E and produces the exact Nash solution i f  

the original problem (including the €-terms) i s  linear-quadratic. 



C m P T E R  VII 

CONSTRAINED LINEAR DIFFERENTIAL GAMES 

7. 1 Introduction 

Very little has been said in the previous chapters about the 

possibility of having inequality constraints on the control o r  state 

variables. Our approach has been to t ry  to extend known resul ts  of 

optimal control theory to the more  general nonzero-surn differential 

game. Inequality constraints, especially those involving only the state 

variables, greatly complicate the analysis of optimal control problems, 

The known algorithms for  handling inequality constraints on the state  

variables a r e  rather  unsatisfactory, especially i f  several  such con- 

straints a r e  present. Thus one i s  naturally reluctant to tackle s tate  

variable inequality constraints i n  the more  difficult differential game. 

However, in  realistic situations which have differential game 

structures (most of which a r i se  in  economic contexts) inequality con- 

straints abound. The analysis of economic competition by differential 

game models will certainly require methods fo r  handling a t  least a few 

inequality constraints. In this chapter we shall  discuss what i s  probably 

the simplest constrained differential game of economic interest.  The 

constraints, system equations, and cost c r i te r ia  a r e  a l l  l inear functions 

of the state and control variables. 

The discussion of the constrained l inear  differential game (CLDG) 

in this chapter i s  preliminary in  nature. No important results have been. 



obtained for this problem. In fact, the model has apparently never 

been formulated before. The special linear structure of the CLDG 

and i t s  resemblence to linear programming seem to offer the hope 

that practical computational algorithms may eventually be developed 

(if not for  the continuous CLDC, then perhaps for some multistage 

version). The availability of an algorithm for solving CLBG with 

several constraints (at  least four) would make the CLDC a potentially 

powerful tool analysing imperfect economic competition. It could in 

fact become the most useful of a l l  differential game models. 

In the following section, the CLDG i s  stated in a form which 

i s  an  extension of the constrained linear optimal control problem. 

Some restrictions on the form of the constraints a r e  necessary in order 

that the problem make sense a s  a game. These a r e  discussed, and a 

general economic interpretation of the model i s  given. 

In Section 7 , 3 ,  the CLDG i s  presented in a more  general i'orrn 

which is  an extension of the "continuous linear programming" problem ( 21) 

and the model is interpreted economically in t e rms  of a set  of coupled 

bottleneck" problems. 

Some of the difficulties one would encounter in attempting to 

compute Nash solutions a r e  discussed briefly in Section 7 .4 ,  

In the general version of the constrained linear differential 

game obtained a s  an extension of the corresponding optimal control 

problem, the ith player wishes to choose u to maximize i 



subject to 

where qi, rij7 A, B.,  w, Gi, D., and d. a r e  time-dependent vectors 
J 1 1 

and matr ices,  known by a l l  the players.  

It i s  important to realize that Player  i i s  restr icted in his  

choice of controls by (7. 3) and (7.4), not by the corresponding 

t h 
equations for the j player. In other words, the ith player i s  

responsible for assuring that the jth player will always have a feasible 

control. * 
Various assumptions rnay be made about the state vector infor- 

mation available to the players during the course of play. However, i t  

i s  essential that the model be constructed i n  such a way that at each 

instant : 

(i) There i s  always a feasible control for each player,  regard-  

less  of the past o r  present actions of a l l  the other players .  

(ii) Each p l ay~ , s  knows how to choose a feasible control. 

*In a s tr ict ly mathematical sense, certain types of "solutions ' h a y  
exist even when i t  i s  possible for a player to "become infeasible. '" 
An example would be an  open loop Nash solution where each player 
was required to choose his controls subject to (7. 3) ,  (7 .  4) f ~ r  all i, 
But this i s  @ the model we have defined. 



We shall a s s m e  that the parameters  a r e  such t h a u i )  i s  satisfied. 

If this were not the case, i t  would be possible, by some sequence 

of feasible controls, to reach a state where one player has no feasible 

control. The game could then not be continued, and we have defined 

no payoff to the N players associated with this result .  A game i s  

meaningless unless payoffs a r e  defined for feasible outcome. 

Hence one should reject any game model where (i) i s  not satisfied* 

If condition (ii) does not hold, then some subset of the players 

could consider the following strategy: Work Player  i into a position 

such that (even though, by (i), he has a feasible control) he does not 

know which controls a r e  feasible. The game cannot proceed beyond 

this point i f  P layer  i makes a "wrong guess," and no payoffs a r e  a s -  

signed for this result. Thus, controls usually do not make 

sense when there a r e  inequality constraints,  and the least  one can 

assume i s  that each player knows the right side of the constraints 

(7 .  3) associated with his own control. (Otherwise he might choose 

an  infeasible control. ) Alternatively, one might assume that each 

player has instantaneous knowledge of the ent ire  state vector x, so 

that he can compute the constraints faced by a l l  the players. His con- 

t rols  would then be closed loop. 

Note also that the formulation does not allow a single constraint 

to involve two players '  controls, for  then cooperation would be r e -  

quired to see that the constraints a r e  satisfied. 



Many situations of economic competition can be represented 

* 
by the differential game ( 7 .  I)-(?'. 4). The following interpretation 

illustrates the idea. The N players might represent a collection of 

large corporations. The control vector u. represents the set of levels 
1. 

th a t  which the i f irm car r ies  out i ts  activities. For  example, the 

components of u. could be the rates of production, labor training, 
1 

capital investment, and dividend payment. The state vector x repre-  

sents the various scarce resources needed to ca r ry  out the activities 

of the firm, e.  g. , machines, trained labor, market demand, etc. 

Some of these resources may be associated with individual f i rms,  

while others (for example, a lake for water supply and sewage disposal) 

T may be shared by several f irms.  The term q. x in the payoff could 
1 

represent the desire of the management to preside over a organi- 

zation (said to be the real  objective of most modern managers) while 

the terms in J. involving the controls could represent dividends paid 
I 

to shareholders (the more  traditional goal of profit maximization). 

The te rms  in J .  involving the rivals1 controls could represent the 
1 

nuisance value of certain activities of the other Grms (most models 

T 
would probably omit these t e rms) .  The terminal t e rm  k. x represents 

1 f 

the estimated value of the final state, taking account of possible opera- 

tions beyond the time horizon tf (often the hardest part  of the model to 

formulate). 

The n x n matrix A represents the rate a t  which the various 

resources diminish or  grow independent of the decisions of the managers 

(e. g. , depreciation, retirement, growing affluence of consumers, etc. ). 

*The reader who i s  familiar with linear economic models can skip the 
res t  cf this section.. 



An inhomogeneous term w covers external inputs to the resource 

supplies and also allows the lower bound on the activity levels to be 

0 in  (7 .4 )  without loss of generality. The rates at which resources 

a r e  increased o r  depleted by the various activities a r e  given by the 

matrices I3 
j' 

Eq. (7. 3) says that various individual activities or  linear com- 

binations of activities of a single f irm a r e  limited by the available 

resources. For example, one component of u. might be the ra te  of 
1 

production. It would then be limited by the production function, 

assumed in this model to be a linear function of equipment, labor, 

and other scarce goods. A row of B. which i s  all  zeroes (with the 
1 

corresponding component of d. positive, represents an '5nstitutional" 
1 

constraint, independent of the resource levels (i. e . ,  a fixed upper 

bound on the corresponding component of u.). 
1 

Generally the model would be formulated so that the components 

of x a r e  always nonnegative. The various matrices and vectors in the 

problem may be quite sparse, a s  long as there i s  enough coupling so 

that each f irm must be concerned with decisions of a l l  i t s  rivals.  

A somewhat more general form of the CLDG may be obtained 

a s  an  extension of the continuous linear programming problem (21) (CLP).  

In this version of the game, the ith player wishes to choose u. to 
L 



subject to the constraints 

where the functions a . .  Bi, ci, and K. .  a r e  a l l  bounded and measureable. 
13' 1J 

By using the transition matrices associated with the linear 

system, the version of the game in the previous section can always 

be put in the form (7. 5)-(7. 7). (This i s  not always easy computationally. ) 

But the converse i s  not true, since not every K(t, s )  i s  the transition 

matrix of a finite-dimensional linear system. For  example, the case 

where 

cannot be represented by a model of the form (7.1)-('7.4). 

The economic interpretation of (7. 5)-(7. 7) i s  similar to that 

given in  the previous section for (7. 1)-(7. 4). Note that at  time t the 

ith player does not merely choose the u. satisfying (7.6) which gives 
1 

him the largest value of a.fu.. He must also consider choosing ui to 
11 1 

increase the right side of (7.6), enabling him to choose larger controls 

later  times, In addition, his choice of u. wi l l  affect the constraints 
1 

of the jth player. Since the values of u.  chosen by the jth player a t  later 
J 

times will affect both the costs and the constraints of Player i, the latter 



must also consider the future effect of his choice of u..(t) on the actions 
I 

of his rivals. Moreover, he knows that the other players a r e  thinking 

the same way. 

Fo r  the case of a single player (N = 1), (7. 5)-(7. 7) i s  some- 

times called a l%ottleneckif problem; the name i s  suggestedby the form 

of (7 .6) .  For  N > I ,  the game might be called a se t  of 

7 . 4  Solutions 

As in al l  nonzero-sum differential games, there a r e  a variety 

of "solutions'' to the CLDG which may be of interest.  The set of non- 

inferior solutions can be found by solving a (N - 1)-parameter  family 

of continuous linear programming problems. Maximin solutions fo r  

each player can be found by solving a set of N zero-sum games, each 

about a s  difficult computationally a s  a CLPe 

In most CEDG models, the solution of greatest interest will be 

the Nash solution. We have seen that the Nash solutions a r e  different 

for different assumptions about the information available to the players. 

The most tractable rnodel i s  obtained by assuming "chat al l  players know 

the values of the right side of (7. 6) for a l l  i (i. e . ,  the controls a r e  

closed loop). Naturally, one would hope that a practical algorithm for  

computing closed loop Nash solutions could be obtained by extending a 

known algorithm for the linear optimal control problem o r  for the CEP. 

Unfortunately, although many theoretical results for the CLP have been 

given by ~ r i n o l d "  ) involving existence of solutions to primal and dual 



problems, a really satisfactory algorithm for solving CLP i s  still 

lacking. Correspondingly, optimal control theory has not produced 

efficient methods for solving constrained linear optimal control prob- 

lems, especially when there a r e  more than a few constraints. 

One approach to the solution of CLP i s  to discretize time and 

solve a linear p r o g r a m i n g  problem (LP) of the form 

T Maximize a z subject to Bz c , z a  0 ( 7 ~ 8 )  
z 

where z i s  the large dimensional vector formed by adjoining the control 

vectors a t  each of the discrete times. However, some difficulties a r i se  

when we attempt to extend this idea to the nonzero-sum CLBG, In ('9,8) 

the controls a r e  approximated by a piecewise constant function of t i q e  

. But our closed~loop assamption requires that the controls be 

considered a s  functions of the state (i. e. , the values of the constraints) 

a s  well a s  time. To represent such a control function a s  a static vector, 

we would have to discretize the levels of the constraints. Besides intro- 

ducing further inaccuracies, this would enormously increase the number 

of constraints in (7 .8 ) .  This problem does not a r i s e  in  the single player 

case because then the closed loop and open loop assumptions lead to the 

same optimal trajectories. 



CHAPTER VIII 

EXAMPLES 0F BIFFERENTUL GAME MODELS 

8 .1  Introduction 

Almost all  the published work on differential games so fax has 

dealt exclusively with two-person, zero- sum differential games, The 

examples have mostly been "pursuit-evasion" situations, motivated by 

such military applications a s  anti-missile defense, submarine warfare, 

deployment of ground forces,  aer ia l  combat, etc. Those who have 

constructed such models have, in effect, ruled out the possibility of 

mutual interest between the conflicting parties.  The extension of the 

theory to the nonzero-sum case makes i t  possible to consider dynamic 

situations where both mutual interest and competition a r e  important; 

a much broader and more  interesting range of problems can then be 

plausibly formulated a s  differential game models. It would appear that 

most of the new applications a r e  in economics, although it  i s  clear  that 

even in military situations there is  always some mutual interest.  

The purpose of this chapter i s  to illustrate a variety of possible 

applications of nonzero-sum differential games to the analysis of im- 

perfectly competitive situations. Each of the remaining sections con- 

siders a different a r ea  of application and presents a model which, 

although simplified, hopefully at  least approximates the real  situation 

well enough to be interesting. No attempt i s  made to these 

examples in any of the senses discussed in  Chapter III. Even the one- 

player versions of these models make difficult optimal control problems. 



From the discussions in Chapters V, VI, and VII of the ad-ditional 

computational difficulties which a r i se  when optimal control problems 

a r e  extended to differential games, it should be clear that the analysis 

of the games presented below must await the development of better 

computational methods. 

In addition to the computational difficulties involved in finding 

"solutionsN to realistic differential game models, i t  may be very hard 

even to formulate the model i n  a plausible way, i f  the system i s  not 

"physical. " A differential game model requires an underlying dynamic 

system, describable by a finite-dimensional vector differential equation. 

Generally not enough is  known about economic, social, o r  psychological 

nsystems" to permit one to have much confidence in such a description. 

Fo r  example, what setoof variables would serve a s  an  adequate "state 

vector for representing the attitudes of consumers about a set  of pro- 

ducts? Moreover, even i f  one were reasonably sure of the form of the 

dynamic model, i t  might be an unreasonable task to determine empiri- 

cally the many parameters involved in  the model. 0% course, these 

same difficulties a r i se  in the application of optimal control theory (or  

even mathematical programming) to "nonphysical" problems. 

Consider the dividend policies for N f irms,  each manufacturing 

a single product, The products a r e  substitutable butnot  identical. 

This means that an increase in  the price of the ith product results in 

lower (but not zero) sales of the ith product and increased sales for all 

other products, In this model, the amount produced by each f irm i s  a 

function only of the firm's capital, and everything produced i s  sold a t  



whatever price the market will offer. These "market clearing prices'" 

a r e  in turn determined by the amounts of N products currently 

offered for sale. A firm can generate new capital only from its own 

profits (no borrowing allowed). Given the appropriate production, 

demand, and production cost functions, one can obtain a vector func - 
tion giving the net profit flow for each f i rm a s  a function of the vector 

of capital levels of all the firms. 

The task of the management of the ith firm i s  to choose the 

(continuous) dividend rate u. to maximize the llshareholderls utility 
1 

function 

subject to 

x. = fi(xl , . . . , xN) - u. 
1 1 

where 

X. = capital level of ith firm 
f 

f. = net profit function 
1 

= Fi(xi)Pi(F1 (xl ), . 0 r FN(xN)) - Ci(xi) 

F. = production function 
1 

P. = market-clearing price function 
1 

C. = production cost function 
1 

a = interest rate 

This i s  clearly a nonlinear nonzero-sum differential game, Even with 

very simple Fi and Pi, the inequality constraints make i t  difficult to 



analyze. The form of the terminal  cost function implies that the 

entire capital a s se t s  could be instantaneously liquidabed (i. e . ,  paid 

out 2s  dit4cle~dsj a t  the end of the plailiiiiig period, 

In some industries,  the f i rms  do not compete through their 

prices,  nor through the amount of their products they offer in the 

market.  Instead, the pr ices  a r e  fixed by tradition, and any f i rm can 

easily supply any amount of i t s  product to the market .  The f irms 

compete entirely through promotional campaigns, and the cost of this 

promotion i s  the only important cost to be considered by the decision- 

makers .  All the other costs in the model to be considered here  will 

be included in a fixed overhead cost (which can be ignored since i t  can- 

not vary) plus a cost which i s  a l inear function of the amount produced. 

The (constant) marginal cost i s  assumed less  than the (fixed) market  

price, so that i t  always pays to produce a s  much a s  the market  deunands, 

Many consumer industries resemble this model; typical examples a r e  

cigarettes and cosmetics.  i(c 

The decision variable for the ith f i rm i s  the - ra te  a t  which i t  

spends money on advertising (it i s  assumed that each f i rm knows the 

optimal way to spend any given sum of money on advertising). Itis 

important to recognize a t  this point that the "dyna~nic system " involved 

here  is not tbe set  of f i rms,  but the market  itself. The ""state variables'! 

"Krishnan and ~ u ~ t a ' ~ ~ )  consider a model of duopoly where the 
control vari-ables a r e  price and promotional effort. 



in  the model must he some collection of quantities which represent 

the attitudes of the public toward the various  brand^.'^ These attitudes 

a re ,  o r  course, influenced by advertising. We would expect that these 

aggregate measures of consumer attitude would change slowly and 

smoothly in  response to advertising "inputs, so that the dynamic be- 

havior of the market demand could be approximated by some finite-state 

model. We shall make the simple a s  sumption that the demands them- 

. (A formidable amount 

of research in market psychology would be required to formulate a 

more  accurate state-variable model. ) The model i s  then formulated 

a s  follows: 

The manager of the ith f i rm (i = 1, .  . . , N) wants to choose his 

rate of advertising u. to maximize profits, discounted to the present: 
1 

L 

J. = 
1 

- u . )ea ( t~- t )d t  + possible terminal value 
1 (8.4) 

subject to 

k = f(x, u l ,  . . . , UN, t )  

where 

x. = rate of demand (in $ per day) of ith f irm Is product 
1 

= gross revenue of ith firm, per day 

c. = fraction of revenue left after marginal costs ( 0  < ci 4 1) x 

a = interest rate 

f. = rate at  which rate of demand for ith product changes 
1 



where f would have the following general properties: 

(i f. > 0 (positive margivlal return on advertising) 1u. 
1 

(ii) f . 9 0 ( s a t u r a t i o ~  effect) lu.u. 
1 1  

(iii) For  any se t  of constant positive ul ,  . . . , uN, and any initial x, 

(8. 5) i s  stable. 

Various other a s smpt ions  about f depend on the nature of the market.  

For  example, i f  the market were highly competitive in the sense that 

one f i rm increases i t s  sales mainly a t  the expense of the other f irms,  

then we might assume a form of f such that fiu < 0 for j f i. 
j 

The previous two sections presented simple models for oligo- 

polistic competition among firms producing related products. Each 

f irm was large enough to influence the behavior of the market,  In 

the model in  Section 8 .2 ,  the prices offered by the market were assumed 

known a s  a &laction of the quantities of the products s f  all the f i rms 

offered for sale. An instantaneous change in the m o u n t  of goods offered 

would cause an  immediate change in  the ltmarket-clearing'f prices. The 

decision variables were not the amounts of goods offered but the rate a t  

which production capacity was increased. The ltlag'@ or  "inertiagf in the 

model came from the process of increasing production capacity by in- 

vestment of profits, 

In. the model in  Section 8. 3, i t  was assumed that the rate of 

production could be changed instantaneously to fulfill exactly a varying 

demand. Pr ices  in this model were fixed by tradition, The amousal: of 



each product demanded by the market was assumed to depend on the 

advertising done by al l  f i rms a t  al l  times up to the present. The 

"inertia" in  this model came not from the production process but from 

the gradual changes in consumer attitudes due to continual exposure to 

advertising. 

It  should be clear  by now that the essential feature of a differ- 

ential game model i s  the "dynamic systemf1--- the process which provides 

the ltinertialt needed to link past, present and future decisions. 

In this section, oligopoly i s  modeled by st i l l  another type of 

dynamic system. In this model, the for each f irm i s  given 

exogenously a s  a function of time. The demand for each product i s  a 

known function of the prices of the goods offered by all N f i rms,  Each 

f i rm may instantaneously control i ts  price, but the excess production 

which i s  not being sold must be stored, a t  a cost dependent on the 

amount stored. In addition to the storage costs, some of the inventories 

a r e  lost through spoilage o r  depreciation. The state variables are then 

the inventories of each firm. A firm with no goods in stock can, of 

course, sell  nothing. Each f irm wishes to maximize profits. If the 

operation i s  "seasonal, I t  the inventories left at  the terminal time would 

be worthless. Otherwise, some terminal value might be assigned to 

inventories at  the end of the planning period. Each f irm t r ies  to control 

i t s  inventory by judicious choice of prices. 

The operator of the ith firm chooses his pxic-e u. to maximize 
1 



subject to 

where 

x. = inventory of ith firm 
1 

F.(t) = production rate (exogenous) (Fi >- 0) 
1 

r .  = rate a t  which ith product i s  sold 
1 

D. = market rate of demand for ith product 
1 

'i = depreciation or  spoilage rate for ith firm's inventory 

(si 3 0 and si(O, t )  = 0) 

c. = storage cost rate for ith firm (ci 3 0) 
1 

Many other 'lcoupledn inventory problems could be modeled a s  

nonzero-sum differential games. For  example, prices might be fixed 

and inventory might be controlled through production, investment, or  

advertising. More complex models of oligopoly could be constructed 

where the inventories a r e  only part of the state vector. 

A simple model for continuous negotiations between labor and 

management i s  presented in  this section. The model has the structure 

of a two-person nonzero-sum differential game. This model might be 

appropriate for such problems because: 



(i) The @systemft  with which both parties a r e  involved i s  a dynamic 

one --present decisions affect future possibilities. 

(ii) The interests of the two parties a r e  not identical, but there i s  

a considerable degree of mutual interest. 

To make the model simple, we assume here that 

variable--the f i rm's  capital assets  --adequately represents the "state ' 1  

of the system. The decision variables a r e  the fraction of the labor 

force employed and the fraction of the profits invested in new capital 

equipment, both chosen by Management, and the wage level, chosen 

by Labor. Management t r ies  to maximize return to shareholders, 

while labor t r i es  to maximize consurnption. 

Define : 

x = capital level of firm 

u = fraction of total labor force employed 

w = total wage rate i f  entire labor force works 

f(x,u) = total production, in units so that price = 1 

L = total labor force, including unemployed 

s = fraction of profits invested in capital equipment 

(1 - s)f - w = rate of payment of dividends to shareholders 

6 = capital depreciation rate 

y = worker's discount on future consumption 

a = interest rate 

C(U, W) = utility function for Labor employed a t  wage w 

M (x ) = present value to Labor of capital a t  terminal. t ime L f 

KM(xf) = present value to Management of capital a t  terminal  time 

w = wage which can be earned at  alternative work by total 
0 

labor force 



The problem i s  then for Labor to choose the wage level w to maximize 

and the fraction s of net profits reinvested to maximize I 

both subject to 

k = s f ( x , u ) - w - 6 x  x o given 

o " - ( u G 1  

O G w  , w = O i f x = O  

o G s G 1  

It i s  assumed that f(x, 0) = f(0,u) = 0, i. e . ,  both capital and labor a r e  

necessary for  production. The utility function for Labor, c(u, w), i s  

probably the hardest par t  of such a model to formulate. 

Since this model has only one state variable, i t  might be 

reasonable to compute closed loop Nash solutions by the f'dynamic pro- 

gramming" approach (Section 5.4). The continuous problem would 

f irst  be converted to a multistage game. In fact, since decisions in 

labor-management negotiations, a s  well a s  in most other economic 

processes, a r e  made a t  discrete times rather than continuously, the 

multistage game might be a better model than the differential game. I 

This section presents a very simple differential game model 

for the interaction of the economic planning policies of several  countries. 



The model i s  far  toe naive to be of practical importance, but it  

i l lustrates the idea that economic competition between nations has 

the mathematical structure of a nonzero-sum differential game. 

Our approach will be to consider f i rs t  a model for economic 

growth which could be used by the planners of each country if the 

effects of the other countries could be ignored. By adding coupling 

terms,  the N separate economies a r e  linked together, and the result 

i s  a differential game. 

As the basic "uncoupled" growth model for each country, we 

use the one-state model due to ~ o l o w ( ~ ~ ) ,  probably the best-known 

model in economic growth theory. Letting 

k = capital/labor ratio 

f(k) = production function 

s = fraction of production saved (reinvested) 

p = population growth constant (P = Poe f3(t-to)) 

c = ( I  - s)f(k) = consumption per capita 

U(c)  = utility of consumption 

y = discount on future consumption (optional) 

Q(k(t ) = present value of capital a t  terminal time f 

the problem i s  to choose the saving ratio s to maximize 

subject to 



1 
For  certain simple production and utility functions [e. g. , f(k) = akz, 

U(c) = c], this optimal growth problem can be solved analytically. 

We shall assume that the coupling between any two economies 

i s  some function of the difference in  capital levels. Since the coupling 

effect would presumably be small  compared to the whole economy, it 

seems reasonable to let this function be linear. Using the definitions 

above, and adding subscripts to denote countries, the problem becomes: 

For  i = 1, . . . , N, choose si to maximize 

I_ 

subject to 

The coupling coefficients b.. will generally be positive, reflecting the 
1J 

idea that the country with a higher capital/labor ratio enjoys a compe- 

titive advantage, and they will depend on the populations of both 

countries. Of course, the b.. must be sufficiently small  so that k. will 
1J 3 

never be driven negative. 

In studying optimal growth models, one i s  often interested in 

solutions, where the economy grows at the same rate as 

the population, so that the capital/labor ratio remains constant, One 

then chooses the constant saving ratio to maximize the constant per 



capita consunmption. Let us do this for our simple model, taking as 
L - 

our production function fi(k.) = a.k? and assuming linear utility. We 
1 1 1  

also put an e in  front of the coupling terms,  to emphasize their small- 

ness and to allow us to determine the f i rs t  order effect of coupling 

on the steady-state Nash solutions by using an expansion technique. 

Define 

and expand y. and s.  in  E as  follows 
1 1 

- 1 2  
yi = Y. f EX. f Z E  Zi f . . . 

1 1 

Then by inserting these expansions in  (8. I ? ) ,  with k = 0, solving for 

x. and z and choosing s and v. to maximize consumption, we obtain 
1 i' i 1 

after routine manipulation the f irst  t e rms  in  the expansion of the steady- 

state Nash saving rates:  

The corresponding expansions for the steady-state consumptions a r e  

This somewhat surprising result says that, in  the a small  

amount of coupling i s  beneficial to al l  countries. However, it must be 

borne in mind that steady-state solutions axe independent of initial 

values. In fact, the per capita steady-state production for this model i s  



Note also the presence of the population growth rate P. in the denorni- 
3 

nator. While the steady-state solutions do not seem to favor the large 

or  advanced countries (in fact, all countries a r e  I1developedH when the 

steady- state i s  reached) nothing i s  said about the transient solution. 

During this transition, which may take a very long time, i t  i s  possible 

that the nations with high capital/labor ratios wi l l  be exploiting the less 

advanced countries, to the detriment of the latter.  



C H O T E R  IX 

S U M M R Y  AND CONCLUSIONS 

A general class of differential games, where the N players 

t ry  to minimize different cri teria by deciding inputs to a single dynamic 

system, was introduced as an extension of optimal control theory, ALL 

of the work on differential games which has yet appeared in the litera- 

ture has been based on a zero-sum formulation, which rules out the 

possibility of mutual interest between the players. The nonze ro - sm 

formulation considered here made i t  possible to model a far  r icher 

and more realistic class of competitive situations (many of which a r i se  

in  economic contexts) where mutual interest i s  important. 

The nonzero-sum differential game not only has a wider range 

of applications than the zero-sum model, but i t  i s  mathematica,kly much 

richer a s  well. The word "optimal" becomes meaningless, and one 

must consider a variety of ltsolution" concepts. Several "solutions ft 

with different features were discussed, a l l  from the viewpoint of optimal 

control theory. For  one solution, the Nash equilibrium, which i s  secure 

against unilateral deviations by any one player, the appropriate con- 

t rols  could be obtained by solving a set of coupled partial differential 

equations, provided that a unique "Nash saddle point" of a vector 

i1Hamiltonianjt could be found. It was seen that the Nash solutisns depend 

on what information i s  available to the players during the course of play; 



for example, the ttclosed loop ' h n d  "open loop " assumptions lead to 

entirely different costs and controls. (In two special cases  - -  the 

optimal control problem and the two-per son, zero - sum differential 

- -  these two Nash solutions coincide. ) 

The minimax solution, where each player minimizes his 

maximum possible cost, could be found by solving a set  of N two-person, 

zero-sum differential games. The minimax solution i s  rather unsatis- 

factory when there i s  a significant degree of mutual interest,  because 

it i s  excessively pessimistic (in fact, i t  might be called the "paranoid 

solutionN). 

Finding the se t  of noninferior (or  pareto-optimal) solutions, 

from which any negotiated solution would be chosen, involved solving 

a (N - 1)wparameter family of optimal control problems. 

In one special case, where the system i s  linear and the costs 

a r e  quadratic, al l  of these solution types can be computed exactly with 

relative ease. The Nash solutions, both open loop and closed loop, 

were presented for a very general form of the linear-quadratic nonzero- 

sum differential game. Noninferior solutions were also presented. 

The computation of Nash equilibria for  more general nonzero-. 

sum differential games i s  much more  difficult than finding optimal 

solutions to optimal control problems o r  two-person, zero- sum differen- 

t ial  games. Pn spite of the apparent similarity of the problems, it  was 

seen that a succe s sfu.1 efficient n s e c ~ n d  order l1 algorithm for solving 

*As long a s  open loop and closed loop Nash solutions both exist, and 
provided that neither player ever deviates from the Nasb rationale. 
See ref. 5, Ch. 9 #  



optimal control problems could not be extended to obtain an itera,tive 

procedure for computing closed loop Nash solutions to nonzero-sum 

differential games. The efficient computation of Nash solutions, 

especially closed loop, remains an outstanding problem. FOP the 

general case, even approximate methods a r e  lacking. 

Certain differential games can be formulated i n  t e rms  of a 

small  parameter such that, when this parameter is zero, the model 

reduces to a special case where the exact closed loop Nash solution 

can be computed. In such games, approximate Nash solutions can be 

obtained by expansion techniques. 

One other special type of nonzero-sum differential game was 

presented --  the constrained linear differential game. It was presented 

because of i t s  great potential usefulness a s  a tool i n  analysing economic 

competition, even though no results have been obtained for this problem, 

either here o r  elsewhere. Its one -player version, the continuous 

linear program, can be solved approximately by linear programming, 

but it is not known whether this approach can be generalized to compute 

approximate Nash closed loop solutions. 

9 .2  Conclusions and final comments 

The nonzero- sum differential game model offers a prsnlising 

new framework for the analysis of the evolution of competitive processes 

in the economy. Competition i s  thought to play an important role in our 

economic system, yet i t  i s  not well understood. A differential game 

model (or an equivalent multistage model) i s  appropriate for analysing 

the type of competition which tfevolveslt slowly over time, that is, 



where the effects of decisions a r e  felt not immediately, but only 

gradually after time has elapsed. 

Obviously, just the of a realistic differential game 

model for describing competition in some industry would be a Lormi- 

dable project, even i f  the analytic difficulties of ttsolvingtt the model 

a r e  disregarded. However, simply attempting to construct such a 

model, even i f  one falls somewhat short of this goal, could be quite 

instructive. In seeking a differential game description, one might be 

led to ask many new and interesting questions. 

To the mathematical analyst, the nonzero-sum differential 

game offers a great variety of challenging problems. It i s  to be hoped 

that the research effort in the near future will be devoted to making 

differential games a more powerful tool for  analysing the types of corn- 

petition which really exist. This has not been the case in  most of the 

work which has been done on zero-sum differential games. Hopefully, 

workers in nonzero-sum differential games will not lavish too much 

attention on the tractable but economically uninteresting linear -quadratic 

case. It would be far more  useful to make progress on the constrained 

linear differential game considered in Chapter VII. 



APPENDIX A 

THE MORE GENERAL LINEAR-QUADRATIC DIFFERENTLAL -ME 

In Chapter IV, the N-player linear-quadratic differential game 

was stated in  i ts  most general form (4.1)-(4.2). However, all the 

results presented in the chapter were based on a simplified version 

(4.3)-(4.4), where the cross  terms,  linear terms, and inhomogeneous 

terms were omitted. Nothing really interesting i s  sacrificed by con- 

sidering only this simpler model, since i t  has al l  of the NimportaYat;" 

features of the more general problem. However, the te rms  omitted 

in the simpler version sometimes occur when one t r ies  to model. realis - 
tic situations by LQDG. For  convenience in  solving such problems, 

the Nash solutions, both open loop and closed loop, a r e  presented below, 

Problem: For  i = 1, .  . . , N, choose u. to minimize 
1 

N 
tf 1 T T 

[zx  Q i x + a i x t  T 1 T T 
(x G..u. t -u. R..u. 4- c,.u.) -I- zldt 

U J  2 J  " J  J J J  
o j=1 

a l l  subject to 

Note: C~mpas i son  of (A. I )  with (4. 1) reveals that "Le above model i s  
P 

not quite a s  general as i t  could be, since cross  terms in the controls 

of different players a r e  not present in the cost integrals. However, 

I 



there  seem to be no reasonable models which contain these t e rms ,  and 

since they make the analysis considerably mess ie r ,  they have been 

omitted here.  

a r e  obtained by solving the generalized 

Bellman equation (3.16) by separation of variables.  The Nash cost 

functions a r e  

and the closed loop Nash controls a r e  

-1  T T T \Yi(x, t )  = -Rii (B. Six 4- Giix + Bi Ei + cii) 
1 

where 

T -1 T -1 T Si = - S . A  - A  Si - Qi t (G,.R.. G . .  C G..R. .  G..) 
1 1J JJ  JJ JJ JJ 1J 

j 

-1 T (G.. + s.B.)R.. B .  ]ti - ai - s iw + (G.. c s . B . R - ~ )  
J J  J  J  JJ  J J J  J  J  jJ 

j j 

-1 T (G..  + s.B.)R.!R.. - S.B - G.. ]R. .  [B. 5. + c . . ]  
JJ  J J JJ  1~ 1 j 1~ JJ J J J J  



vi(tf) = c (A. 4 )  

The se t  (A. 6) of N coupled linear vector differential equations can  be 

solved once the S. ( j  = 1 , .  . . , N) have been found by solving (A. Ei), It 
J  

is  then a simple mat ter  to evaluate the quadratures (A. 7). 

a r e  most readily obtained from the variational 

necessary conditions (3.11)-(3.14). By guessing that the solution has 

the form 

and substituting this into the necessary conditions, one obtains the 

open loop Nash controls 

-1 T T T 
ui(t) = -Rii [(Bi Si + Gii)x f c.. 11 + Bi Ei] 

where the matr ix  Si(t) i s  the solution of 

T -1 T T S. = -SiA - A Si - Qi + Si B.R.. (B. S. t G..) 
1 J  JJ  J  J  J J  

j 

-1 T T 
G..R.. (B. S. + G..) 

1J JJ  J  J  JJ  
j 

and the vector Ei(t) i s  the solution of 

T - 1 T E~ = -A ei - ai t (s.B. t G..)R. .  ( c ~ ~  4- B. g . )  
1 J  LJ JJ  J J  

(A. 1.0) 

(A. I n )  



Note carefully that Si and Ei which solve (A. 10) and (A. 11) a r e  not 

the same a s  Si and ci which solve the closed loop equations (A. 5) and 

(A. 6), except in certain special cases. 

The costs associated with the open loop Nash solutions cannot 

be obtained directly from the solutions to (A. 9)-(A. 1 I ) ,  but once these 

equations have been solved, the costs can be obtained by integrating a 

set of linear equations which a r e  a generalization of (4. 13). Omitting 

the straightforward derivation, we merely state the result: When all 

players use open loop Nash controls, starting from the initial point 

(xo, t ) their costs a r e  
0 

(A. 12) 

where the symmetric matrix P.( t)  and the vector q ( t )  a r e  solutions of 
1 

-1 T T T - 1  T + G. .R. .  (B.  S. + G..) t (G.. + S. B. )R. .  G. .) 
l J  JJ J J JJ JJ J J JJ  1J 

P (t ) = Sif i f 
(A. 13)  

T T -1 T q = -A q. - ai + (6.. t S .  B . ) R . .  (B.  q. J- G . . )  
1 JJ  J J 35 J 1 1J 



and 

(A. 15) 



APPENDIX B 

In Chapter IV, the open loop Nash solutions for the l inear-  

quadratic differential game were obtained f rom the variational 

necessary conditions. The open loop controls were given in t e rms  

of the solution to an  asymmetric  "Riccati-like matr ix  differential 

equation (4. 10 ) .  The reader who i s  familiar with the solutions to  

linear -quadratic optimal control problems o r  two-per son, zero-sum 

differential games may have been surprised that i n  the more  general 

case the multiplier hi associated with the ith player was related to 

the state vector by an  matr ix  S and that the costs could 
i' 

not be obtained directly from this matrix. 

To aid in understanding this result ,  and to provide a n  inter - 
pretation for the multipliers h l ,  . . . , AN, an  alternate derivation of 

the open loop solutions, based on the value function approach (i, e. , 
the "dynamic programmingt1 approach) i s  presented here.  

The derivation i s  based on the following idea: i f  the ith player 

knows the open loop control functions used by the other players,  he can 

calculate his own open loop control by solving a n  optimal control problem 

with the other players '  controls considered a s  known forcing t e rms  in 

the state equation and cost  functional. Either an open loop o r  a closed 

loop method may be used, since they give the same solution i n  zny 

deterministic optimal control problem. Thus player i can use  the Bellman 

equation to compute his open loop Nash control explicitly as a function of 



the arbi t rary  control functions used by the other players.  The re- 

sulting partial  diffe r ential equation can then (by the usual educated 

guess) be transformed to a set  of ordinary differential equations with 

boundary conditions a t  the terminal t ime. The st i l l  unknown controls 

of the other players will appear in these equations. This i s  done for 

al l  the players,  and the entire se t  of controls can then be found by 

demanding that, for each i, the Nash control found by solving the i th 

player's optimal control problem be the same a s  the a rb i t r a ry  control 

assumed for the ith player by a l l  the other players.  Because the opti- 

ma l  controls found for each player will be given i n  t e rms  of the state 

vector, this last  step will require solving a two-point boundary value 

problem, This is quickly accomplished by applying another old famil iar  

trick. 

We a r e  now ready for the details of the derivation. F rom the 

point of view of the ith player, let the (unknown) controls for the other 

players be denoted jd.(t), j f i. The Bellman equation for the ith player 
J 

(for the problem stated in (4. 3) ,  (4. 4))  i s  



We then guess the following separation of variables: 

Substituting this into (B. 1)  and collecting like powers in x, one then 

easily verifies that (B. 2)  i s  the solution, where 

1 T  - l T  1 T h. = 25 .  B .R. .  Bi Ei - (E'B, + --b. R .  .)# 
1 1 1 11 2~ 1~ j 

and the Nash control for the ith player i s  

where x(t) i s  the t rajectory resulting from integrating the state equation 

from (xo, to), using the controls dl ,  . . . , BN: 

-1 T 
Bjbj = Ax - B.R.. B. (S x C Ej) 

J J J  J  j 
j j 

When (B. 6) i s  substituted into (B. 3) and (B. 4), the resulting equations 

together with (B. 7)  form a two-point boundary value problem. Note 

carefully that we never made any lfclosed loop assumptions1' about the 

other players controls in reducing the ith player 's Bellrnan equation 

to a set  of ordinary differential equations. 



All that remains i s  to solve the two-point boundary value 

problem. The only independent variable in these equations i s  t. Let 

us define the n x n matr ix  M.(t) by 
1 

Si(t) = Mi(t)x(t) (as  suming x 0) 

Then 

-1 T +-4 bi = -Rii Bi (Si + M.)x for i = l , . , . , N  
1 (B* 9 )  

Substituting this into (B. 4) then gives a differential equation for M 
i "  

T -1 % -. k. = -M.A - A Mi + (2. + Mi) B.R..  B .  (S. + M.) 
1 1 1 J J J  J  J  J 

(B. 10)  

It i s  interesting to add this equation to (B . 3) .  The resul t  i s  

-1 T @ 

B.R.. B.  (S. C M.) 
J J J  J  J  J  

+.I 

If one defines Si = S .  + Mi, one sees  that (B. 1 l ) ,  which was obtained 
1 

f rom the Bellman equation, i s  the same as (4. 1 O), obtained from the 

variational necessary conditions. 

We  now seek an interpretzition of the multipliers Xi, i = 1, . . . , N, 

which appear i n  the necessary conditions for the open loop controls 

(4. 5)-(4.8). Taking the gradient of (B. Z), 



T ViX(X, t )  = xT$(t) + 5. (t)  
1 

(B. 12) 

Eva lua t i~g  V OE the Nash path by using (13.8), 
ix 

T - T T T V. ( ~ ( t ) ,  t )  = ~ ( t )  [Si(t) + Mi (tj] = ~ ( t )  Si(t) - = ~ ~ ( t ) ~  
1 X 

(E3.13) 

so Xi can be interpreted a s  the influence of a perturbation of x on the 

ith player's cost, when the ith player i s  allowed to  adjust (optirnal1.y) 

his control while the other players a r e  forced to use their "nominaln 

Nash open loop controls. 

The derivation presented here  also gives an  alternate way to 

compute the open loop Nash costs.  Substituting for  bi and 5 .  in  (B. 5), 
1 

If we define the symmetric matr ix  2. (t) by 
1 

we find from (B. 14) that Zi satisfies 

T -1 T -1 T (S". + M. (B.R. .  B .  ] Z  - Z[A - B.R.. B .  ( S .  + M.)] 
J  J  J J J J  J J J  3 J  J 

T -1 T T -1 T - 
+ M~ B ~ R ~ ~  B~ M~ - (8. + M .  ) B . R . . B .  (s. C M . )  

J J  J J J J  3 3 

-1 T - - 1  T 
{M?B.R.. B.  (s. + M . )  + (g. +M?)B .R . .  B .  M.} 

1 J J J  J  J  J J  J  J J J J  1 



From (B. 2), (B. 8 )  and (B.16), the Nash cost for the ith player 

starting at  (xo, to) i s  

where 

pi( t)  = si(t) t ~ : ( t )  t ~ ~ ( t )  + zi(t) 

By adding (B. 3),  (B. LO), the transpose of (B. 1 O), and (B. 16), a differ- 

ential equation for Pi can be obtained. In fact, as one would expect, 

i t  i s  exactly the same a s  (4. 13). 

Thus the open loop solutions can be obtained by the value function 

approach, provided that one i s  careful to t rea t  a l l  the controls of the 

rivals of player i a s  functions of until after the partial 

differential equation for  V.(x,  t) has been converted to a se t  of ordinary 
1 

differential equations. The results for the controls and costs  a r e  then 

identical to the results obtained (somewhat more easily) by starting 

from the variational necessary conditions. 
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A B S T R A C T  

A general ela,ss 06 differentigl games, where the PJ players t r y  to minimize 
&fferent cost cr i ter ia  by controlling inputs to a eingle dynamic system, is inves - 
tigated as an  extension of optimal control theory, Dropping the usual zero-sum 
a s s m p t i o n  makes it possible do mode% a mbPe realistic class 09 competitive 
situa-tione where mutual interest i s  important. 

The nonze ro - sm formubhtion has several  interesting aaalytic and conceptual 
features not i o m ~ d  in zero-smn diaerential games. It i s  no longer obvious 'pp:~h~% 

should be desma.nded of a 6's~lution,g0 and three types of solution c o n ~ e p t s  are d i s -  
cussed:: Nash equilibaaim, minimax, and noninferior (or Pareto  optimal) strate- 
gies, F o r  one special case, the "linear--vadradic @ differential game, ail of these 
solutions can be cdmputad exactly by solving sets  of %supled ordinary matrix dif- 
ferential equations: 

Another featv.re not iomd in optimal coPltrol problems o r  in two-person, zero-  
diaerential games is the difference between "open loopsf and kelosed Loayn - 

equilibria. The B'prEneiplb af optimaiiiy of optimal eontroE theory does not genera- 
l ize in an  obvious way to the nonzero-sm qifferential game. Some simple exa-mp$e 
are gi vea to illustrate this, % t i i s  s l a s m  that the v a ~ o u s  e%ficieaL"& a l g s r i t h s  of 
sptimal. control theory (such as $'differc;nt.iak dynamic: prrsgr;aanmingsf) do not readily 
extend to the casm~piztatioza s f  Nash equiPibrim controls. However, approximate 
N a s h  solutions can be rsbtained in certain special cases. 

Some slxnple examples a r e  solved, and ser ies  of more difficult but more 
rea1ist.i c E m z e r o -  sqLVl"a dilfaieential game situadons a r e  presekted (but reok solved) fo 






